The Beginning of Modern Astronomy

Slides:



Advertisements
Similar presentations
UNIT 6 (end of mechanics) Universal Gravitation & SHM
Advertisements

Chapter 13 Gravitation PhysicsI 2048.
5. Universal Laws of Motion
Newton’s Law of Universal Gravitation, Satellites, and Weightlessness
Review Chap. 12 Gravitation
Chapter 8 Gravity.
Gravitation Newton’s Law of Gravitation Superposition Gravitation Near the Surface of Earth Gravitation Inside the Earth Gravitational Potential Energy.
Chapter 7 Rotational Motion and The Law of Gravity.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
© 2004 Pearson Education Inc., publishing as Addison-Wesley 5.1 Describing Motion: Examples from Daily Life Distinguish between speed, velocity, and acceleration.
Gravity.
Physics 151: Lecture 28 Today’s Agenda
Newton’s Laws of Motion three laws of motion: fundamental laws of mechanics describe the motion of all macroscopic objects (i.e., everyday size objects)
Chapter 13 Gravitation.
6. Centripetal force F = ma 1. Example: A stone of mass m sits at the bottom of a bucket. A string is attached to the bucket and the whole thing is made.
Chapter 13: Kinetics of a Particle: Force and Acceleration.
Gravity and Motion and Time on the Earth Upward Bound.
Rotational Motion and The Law of Gravity
Honors Physics Semester 1 Review PowerPoint. Distance vs Displacement Distance = magnitude only = 8m Displacement = magnitude and.
Newton and Kepler. Newton’s Law of Gravitation The Law of Gravity Isaac Newton deduced that two particles of masses m 1 and m 2, separated by a distance.
Universal Gravitation
Physics I Honors 1 Specific Forces Fundamental Forces Universal Gravitation.
Universal Gravitation
Monday, Nov. 25, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #20 Monday, Nov. 25, 2002 Dr. Jaehoon Yu 1.Simple Harmonic.
Chapter 7 Law of Gravity & Kepler’s Laws
Chapter 8 Universal Gravitation
Universal Gravitation
Universal Laws of Motion “ If I have seen farther than others, it is because I have stood on the shoulders of giants.” Sir Isaac Newton (1642 – 1727) Physicist.
Newton’s Law of Gravitation. Newton concluded that gravity was a force that acts through even great distances Newton did calculations on the a r of the.
Uniform Circular Motion AP Physics 1. Centripetal Acceleration In order for an object to follow a circular path, a force needs to be applied in order.
Kepler’s first law of planetary motion says that the paths of the planets are A. Parabolas B. Hyperbolas C. Ellipses D. Circles Ans: C.
 Galileo was the first who recognize the fact that all bodies, irrespective of their masses, fall towards the earth with a constant acceleration.  The.
How we know what we know An introduction into orbital mechanics Matt Hamill.
Sir Isaac Newton Newton, as he appeared on the last day of his life, in 1727.
Chapter 13 Gravitation. Newton’s law of gravitation Any two (or more) massive bodies attract each other Gravitational force (Newton's law of gravitation)
Monday, Oct. 4, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Law of Universal Gravitation 2.Kepler’s Laws 3.Motion in Accelerated Frames PHYS.
Gravitation. Gravitational Force and Field Newton proposed that a force of attraction exists between any two masses. This force law applies to point masses.
AP Physics C I.F Oscillations and Gravitation. Kepler’s Three Laws for Planetary Motion.
Patterns of Motion. In a moving airplane, you feel forces in many directions when the plane changes its motion. You cannot help but notice the forces.
Chapter 12 Universal Law of Gravity
Universal Gravitation.
Monday, June 11, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Monday, June 11, 2007 Dr. Jaehoon Yu Forces in Non-uniform.
Describing Motion: Examples from Daily Life Distinguish between speed, velocity, and acceleration. What is the acceleration of gravity? How does the acceleration.
Proportionality between the velocity V and radius r
SPH3U – Unit 2 Gravitational Force Near the Earth.
Circular Motion.
Chapter 13 Gravitation Newton’s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 12 Physics, 4 th Edition James S. Walker.
Copyright © 2012 Pearson Education Inc. Gravitation Physics 7C lecture 17 Tuesday December 3, 8:00 AM – 9:20 AM Engineering Hall 1200.
A New Era of Science Mathematics as a tool for understanding physics.
Kepler’s Laws  Kepler determined that the orbits of the planets were not perfect circles, but ellipses, with the Sun at one focus. Sun Planet.
Spring 2002 Lecture #21 Dr. Jaehoon Yu 1.Kepler’s Laws 2.The Law of Gravity & The Motion of Planets 3.The Gravitational Field 4.Gravitational.
Gravitation. Flat Earth This is true for a flat earth assumption. Is the earth flat? What evidence is there that it is not? Up to now we have parameterized.
Gravitation Reading: pp Newton’s Law of Universal Gravitation “Every material particle in the Universe attracts every other material particle.
PHY 151: Lecture 6A 6.1 Newton’s Law of Universal Gravity 6.2 Gravitational Formula 6.3 Extending Particle in Uniform Circular Motion Model.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 12 Physics, 4 th Edition James S. Walker.
Chapter 7 Rotational Motion and The Law of Gravity.
1 The law of gravitation can be written in a vector notation (9.1) Although this law applies strictly to particles, it can be also used to real bodies.
The story of the apple When Newton observed the apple fall, he wondered if the force that caused the apple to fall to the ground was the same force that.
Chapter 12 Gravity.
Lecture Outline Chapter 12 Physics, 4th Edition James S. Walker
Forces.
Universal Gravitation
Isaac Newton ( ) Newton’s Laws of Motion
PHYS 1443 – Section 003 Lecture #11
Universal Gravitation
Mechanics Gravitations MARLON FLORES SACEDON.
Gravitation.
The story of the apple When Newton observed the apple fall, he wondered if the force that caused the apple to fall to the ground was the same force that.
PHYS 1443 – Section 001 Lecture #8
Presentation transcript:

The Beginning of Modern Astronomy

Isaac Newton (1642-1727) Motion Concepts did research on optics (the properties of light) invented calculus discovered the three laws of Motion discovered the law of universal gravitation Motion Concepts inertia: resistance to a change in motion. mass: numerical measure of inertia, amount of material in the object. speed: how fast something moves. velocity: speed and direction. acceleration: rate of change of velocity. Acceleration in the direction of motion speeds up the object. Acceleration perpendicular to the object’s path changes the direction of its motion. momentum: mass × velocity.

Newton’s Laws of Motion An object moves with constant velocity unless acted on by an unbalanced external force. When an object is acted on by an unbalanced force, it accelerates in the direction of the unbalanced force. The magnitude of the acceleration is related to the magnitude of the net (unbalanced) force by the equation Fnet = ma, where m is the mass of the object and a is its acceleration. When two objects interact, they exert equal and opposite forces on each other. FA on B = - FB on A.

Circular Motion, Centripetal Acceleration, and Centripetal Force An object in uniform circular motion is accelerating even if its speed is constant. In this case, there is no acceleration along the path of the object; the acceleration, called centripetal acceleration , is perpendicular to the path (toward the center of the circle). The force that causes a centripetal acceleration is called a centripetal force. centripetal acceleration, v is the speed, and r is the radius of the circle. The centripetal acceleration is calculated using the formula where a is the Example 1 The average distance from Earth to the Moon is 3.84×108 m, and the moon’s average orbital speed is 1022 m/s. Calculate its centripetal acceleration.

Newton’s Law of Gravity Any two particles in the universe attract each other with a force that is directly proportional to the product of their masses and inversely proportional to the distance between them. The minus sign reminds us that the force is attractive. r m M G = 6.673×10-11 Nm2/kg2 M and m are the masses of the two particles. r is the distance between their centers. A spherically symmetric object is one whose mass is distributed equally in all directions. The force on a particle outside an object with spherical symmetry is the same as if all of of the object’s mass were concentrated at its center. This allows Newton’s law of gravity to be used for things like planets, which are almost spherically symmetric.

Relation Between Weight and Mass weight = the gravitational force on an object. Consider the falling object shown at the right. If air resistance is negligible, the only force acting on it is gravity. Fnet = FG Fnet = ma M = mass of Earth m = mass of object R = radius of earth The acceleration due to gravity is directly proportional to the mass of the planet and inversely proportional to the square of the distance from the planet’s center. It is usually denoted by the symbol g. W = weight = mg Near earth’s surface, a = g = 9.8 m/s2. When air resistance is negligible, the acceleration of a falling body does not depend on its weight.

Newton’s second law of motion and his law of gravity enable us to determine the masses of planets and stars. Example 2 The acceleration due to gravity at the surface of the Earth is 9.8 m/s2, and the radius of the Earth is 6380 km. What is the mass of Earth?

Example 3 An astronaut whose weight is 150 lb on Earth is launched to an altitude of twice earth’s radius. What is his weight at that altitude? Example 4 From the moon’s orbital speed and its distance from the center of Earth, Newton knew that the centripetal acceleration of the Moon is 0.0027 m/s/s; this is the experimental value of the moon’s acceleration. Since the (average) distance from Earth to the Moon is about 60 times the radius of Earth, Newton’s law of gravity predicts that the acceleration should be The agreement between this theoretical value and the experimental value was an important confirmation of Newton’s law of gravity.

Conservation of Angular Momentum P O When the net force on a particle is always directed toward a fixed point, its angular momentum relative to that point does not change with time; i.e., its angular momentum is conserved. The gravitational force of the Sun on a planet is always directed toward the Sun, so the angular momentum of the planet relative to the sun is conserved. It can be shown that the conservation of the angular momentum of a planet is equivalent to the statement that the line from the Sun to the planet sweeps out equal areas in equal times, so Kepler’s second law of planetary motion is equivalent to the law of conservation of angular momentum applied to a planet in orbit around the Sun.

Kinetic Energy, Radiative Energy, and Potential Energy Energy is the ability to move an object while exerting a force on it. The energy of an object due to its motion is called kinetic energy. It is defined by the equation Potential Energy is the energy that a group of objects has because of their relative positions. There is no single formula for potential energy. When you exert a force on an object and cause it to move, you put energy into it. The process of putting mechanical energy into an object is called doing work on the object. Radiative Energy is the energy of the electric and magnetic fields in electromagnetic radiation.

P = the sidereal period of the planet (or satellite). m = the mass of the planet (or satellite). M = the mass of the Sun (or planet). G = 6.673×10-11 Nm2/kg2. The law of conservation of energy can be used to prove Kepler’s third law of planetary motion and add some detail to it. Example 5 The sidereal period of the Moon is 27.32 days, and its average distance from Earth is 384,000 km. Calculate the mass of Earth. Assume that the mass (m) of the Moon is negligible compared to that of Earth (M). Solving for M P = 27.32 days = 2.732×101×8.64×104 s = 2.360×106 s a = 3.84×105 km = 3.84×105×103 m= 3.84×108 m G = 6.673×10-11Nm2/kg2 M = 6.02×1024 kg

Circular Velocity The orbital speed of a satellite in a circular orbit of radius r around a planet of mass M is where G = 6.67310-11Nm2/kg2. r M Example 6 Calculate the orbital speed of a satellite in a circular orbit 150 km above the surface of Earth. Assume that the radius of earth is 6380 km and its mass is 5.98×1024 kg. r = 150 km + 6380 km = 6530 km r = 6.53×103 x 103 m r = 6.53×106 m M = 5.98×1024 kg Vc = 28,500 km/hr = 17,500 mi./hr

Escape Velocity If an object is at a distance r from the center of a planet of mass M, it can escape from the planet if its speed is at least equal to Ve where Ve is called the escape velocity. Example 7 Calculate the escape velocity from the surface of Earth. r = 6.38×106 m M = 5.98×1024 kg

Tides The length of a day increases by about 0.0023 seconds per century, and the Moon moves farther from Earth by about 3.8 cm per year. Why? 900 million years ago, earth’s day was 18 hours long.