Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial.

Slides:



Advertisements
Similar presentations
Hydrology Rainfall Analysis (1)
Advertisements

Multiple Sensor Precipitation Estimation over Complex Terrain AGENDA I. Paperwork A. Committee member signatures B. Advisory conference requirements II.
Introduction to Precipitation
Literature Review Kathryn Westerman Oliver Smith Enrique Hernandez Megan Fowler.
Why do we need to measure rainfall?
Formation of Precipitation Requires Cooling of air to  dew point temperature (requires a lifting mechanism) Condensation of water vapor onto nuclei (dust,
Precipitation Joan Wu and Jan Boll (06/2012). What Have You Known?  The importance of understanding precipitation as a hydrologic processes  Mechanisms.
CE 394K.2 Precipitation Precipitation mechanisms Rainall maps Rainfall hyetographs Nexrad measurement of rainfall Reading: Applied Hydrology Sections 3.5.
COMPILATION OF RAINFALL DATA TRANSFORMATION OF OBSERVED DATA *FROM ONE TIME INTERVAL TO ANOTHER *FROM POINT TO AREAL ESTIMATES *NON-EQUIDISTANT TO EQUIDISTANT.
Alberta Rainfall-Runoff Analysis September, 2002.
Forest Hydrology: Lect. 18
Hydrology Chia-Ming Fan Department of Harbor and River Engineering
CHAPTER 3 PRECIPITATION
Hydrologic Theory One of the principal objectives in hydrology is to transform rainfall that has fallen over a watershed area into flows to be expected.
CHAPTER TWO PRECIPITATION
SECONDARY VALIDATION - RAINFALL DATA PRIMARY VALIDATION ALREADY DONE *ON INDIVIDUAL STATION BASIS SECONDARY VALIDATION *IDENTIFY SUSPECT VALUES BY HAVING.
WFM 6202: Remote Sensing and GIS in Water Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6202: Remote Sensing and GIS in Water Management Akm.
UH Unit Hydrograph Model Response Functions of Linear Systems Basic operational rules:  Principle of Proportionality: f(cQ ) = c  f(Q)  Principle of.
Spatial Interpolation
CHAPTER TWO PRECIPITATION
Precipitation P: water (solid, liquid) falling from atmosphere to ground P includes Rain, Drizzle, Snow, Hail, Sleet, Ice crystals Measurement: Container.
Analyses of Rainfall Hydrology and Water Resources RG744
Hydrologic Statistics
CARPE DIEM Centre for Water Resources Research NUID-UCD Contribution to Area-3 Dusseldorf meeting 26th to 28th May 2003.
Statewide Map-based IDF Analysis Norman Gonsalves for Caltrans.
Estimation of Areal Precipitation from point measurements Most often interested in quantifying rainfall over an entire watershed. Has to be inferred from.
Areal Estimation techniques Two types of technique: 1. Direct weighted averages 2. Surface fitting methods DIRECT WEIGHTED AVERAGE METHODS use the equation:
Precipitation Precipitation: water falling from the atmosphere to the earth. –Rainfall –Snowfall –Hail, sleet Requires lifting of air mass so that it cools.
Precipitation Faculty of Applied Engineering and Urban Planning
Economic Cooperation Organization Training Course on “Drought and Desertification” Alanya Facilities, Antalya, TURKEY presented by Ertan TURGU from Turkish.
Rationale The occurrence of multiple catastrophic events within a given time span affecting the same portfolio of insured properties may induce enhanced.
Hydrology I Jozsef Szilagyi, Professor of Hydrology Department of Hydraulic and Water Resources Engineering Budapest University of Technology and Economics.
WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation TECO-2012 Brussels, Belgium, 16 – 18 October 2012 Inter-comparison.
Spatial Analysis & Geostatistics Methods of Interpolation Linear interpolation using an equation to compute z at any point on a triangle.
DES 606 : Watershed Modeling with HEC-HMS Module 8 Theodore G. Cleveland, Ph.D., P.E 29 July 2011.
More Precipitation Hydrology Spring 2013 Instructor: Eric Peterson.
U.S. HYDRO 2007 TIDES WORKSHOP May 17, 2006 UNCERTAINTY WORKSHOP SKGILL SLIDES.
Elementary Engineering Hydrology BY Deodhar M. J.
EVALUATION OF THE RADAR PRECIPITATION MEASUREMENT ACCURACY USING RAIN GAUGE DATA Aurel Apostu Mariana Bogdan Coralia Dreve Silvia Radulescu.
Grid-based Map Analysis Techniques and Modeling Workshop
NWS Calibration Workshop, LMRFC March, 2009 slide - 1 Analysis of Temperature Basic Calibration Workshop March 10-13, 2009 LMRFC.
BEGIN Precipitation as the Input. Some Huge Rainfalls.
CE 3354 Engineering Hydrology
Fritz Fiedler Calibration 2290 East Prospect Road, Suite 1 Fort Collins, Colorado National Weather Service River Forecast System Cooperative Program.
WEEK 1 E. FACHE, A. GANGOTRA, K. MAHFOUD, A. MARTYSZUNIS, I. MIRALLES, G. ROSAT, S. SCHROERS, A. TILLOY 19. February 2016.
Rain gauge Lathiya milan. Methods of Measuring Rainfall: Remote Tipping bucket rain gauge -The bucket tips when precipitation of 0.2 mm,
Module 10: Average Rainfall Theodore G. Cleveland, Ph.D., P.E, M. ASCE, F. EWRI August 2015 Module 10 1.
WATER RESOURCES ENGINEERING
Analyses of Rainfall Hydrology and Water Resources RG744 Institute of Space Technology October 09, 2015.
Assoc.Prof. dr.tarkan erdik
Precipitation Measurement and Data Analysis
CE 394K.2 Hydrology Precipitation
RAINGUAGE NETWORK DESIGN
Digital model for estimation of flash floods using GIS
Precipitation All water enters the land phase of the hydrologic cycle as precipitation. Thus in order to assess, predict and forecast hydrologic responses.
Design Rainfall Distributions Based on NRCC Data
Radar/Surface Quantitative Precipitation Estimation
CHAPTER 3 PRECIPITATION 1 Hydrology (CE 424) Instructor: Dr. Saleh AlHassoun.
Precipitation Precipitation: water falling from the atmosphere to the earth. Rainfall Snowfall Hail, sleet Requires lifting of air mass so that it cools.
Precipitation Analysis
INTRODUCTION TO HYDROLOGY
Precipitation Single strongest variable driving hydrologic processes
Spatial interpolation
Preciptation.
CHAPTER TWO PRECIPITATION
WRE-1 BY MOHD ABDUL AQUIL CIVIL ENGINEERING.
Hydrology CIVL341.
CHAPTER TWO PRECIPITATION
Precipitation P: water (solid, liquid) falling from atmosphere to ground P includes Rain, Drizzle, Snow, Hail, Sleet, Ice crystals Measurement: Container.
Stochastic Hydrology Simple scaling in temporal variation of rainfalls
Presentation transcript:

Precipitation – Gauge Network Precipitation varies both in time and space Sound hydrologic/hydraulic designs require adequate estimation of temporal/ spatial precipitation patterns. The density of rain gauge network depends on (1) purpose of the study; (2) geographic configuration of the study region; (3) economic consideration.

Rain Gauge Density in HK Rain gauge density in HK is:  Daily 13.6 km 2 /gauge  Autographic/ Automatic 11.0 km 2 /gauge Rain gauge density is significant higher in Hong Kong Island and much sparse relatively in New Territory (see figure). TypeNumber of StationsLocation Map HKO Automatic Weather Station Rain Gauges18Figure 2 GEO Rain Gauge Stations - Telemetered86Figure 2 DSD Rain Gauge Stations - Telemetered9Figure 2 HKO Conventional Rain Gauge Stations51Figure 3 HKO Automatic Reporting Rain Gauges21Figure 2

Conventional Raingauge Locations in HK

Telemetered Raingauge Network in HK

World Meteorological Organization (WMO) Suggestion A minimum density for precipitation gauge network: (at least 10% are automatic recording gauges) I: Flat region of temperature, Mediterranean & tropical zones; IIa: Mountain region of temperate, Mediterranean & tropical zones IIb: Small mountains island with very irregular precipitation requiring very dense hydrographic network III: Arid and polar zones

Errors Precipitation Measurement 1. Human Error: scale reading & water displacement (if a dip stick is used) 2. Instrumental Defect: water to moisten the gauge; speed at which mechanical devices work (such as tipping bucket gages); & inadequate use of wind shield 3. Improper Siting: height above ground of the gage orifice; exposure angle; & regionalization techniques (Ref: “Uncertainties in Estimating the Water Balance of Lakes,” by T. C. Winter, Water Resources Bulletin, AWRA, 17(1), 1981)

Effect on Wind on Precipitation Measurement

Analysis of Temporal Distribution of Rainstorm Event - Only feasible for data obtained from recording gauges. - Rainfall Mass Curve 累積曲線 : A plot showing the cumulative rainfall depth over the storm duration - Rainfall Hyetogragh ( 組体圖 / 過程線 ): A plot of rainfall depth or intensity with respect to time - Instantaneous Rainfall Intensity, (slope of the mass curve) - Average Intensity in (t, t +  t) is Time Depth Time Depth or Intensity

Rainfall Mass Curve & Hyetograph

Autographic Chart

Clock-Time vs. Rolling-Time Max Rainfall Example (GEO Raingage N17 on 5 November 1993) Time15-min5-minRainfall (mm) 3:45 3: : : : : : : : :  Clock-time 15-min maximum rainfall depth = 37.5 mm  Rolling-time 15-min maximum rainfall depth = 45.0mm

Example of Rainfall Analysis

Double Mass Analysis  Changes in gage location, exposure, instrumentation, or observational procedures may cause relative change in the precipitation catch. This information is not usually included in the published records.  Double–mass curve analysis tests the consistency of the record at a gage by comparing its accumulated annual or seasonal precipitation with the concurrent cumulated values of mean precipitation for a group of surrounding stations.  Abrupt changes or discontinuities in the resulting mass curve reflect some changes at the target gage. Gradual changes in the slope of the mass curve reflect progressive changes in the vicinity of the target gage, such as the growth of trees around a rain gage.  The slopes of different portions of the mass curve can be used as a basis for correcting the record of the target gage.

Operation of Double Mass Analysis  P i,t or  P i,t / n  P x,t Adjustment factor for data after 1916 = S 1 / S 2, i.e., P x, t = P x, t  S 1 /S 2, t > 1916 S2S2 S1S  A change of slope should not be considered significant unless it persists for at least 5 years.  Due to the fact that the data may have some scatter, an indicated change in slope should be confirmed by other evidence unless the change in slope is substantial (say, greater than 10%).

Example – Double Mass Analysis

Point Rainfall Analysis · Purposes: To transfer rainfall amounts observed from nearby index stations to ungauged location or gauge with missing data · Methods: - Arithmetic average method - Normal ratio method - Inverse distance method (& modified versions) - Linear programming & other optimization methods - Isohyetal 等雨線 method - Kriging method · General philosophy: where ; P x = rainfall amount to be estimated ; P i = rainfall amount at index station i ; a i = weighting factor for index station i. Sometimes, we may want to impose a i  0 for all i = 1, 2, … n Px?Px? P2P2 P1P1 P3P3 P4P4

Arithmetic Average/Normal Ratio Methods  Arithmetic Average Method:  Normal Ratio Method: or where N i = Average annual total rainfall at station i.

Inverse Distance Method Inverse Distance Method:, i = 1, 2, …, n where D i = distance from index station i to the point of estimation. Issue: How to determine the "best" value for "b"? Px?Px? P2P2 P1P1 P3P3 P4P4

Modified Methods Modified Normal Ratio Method: i = 1, 2, …, n Issue: How to determine the "best" value for "b"? Modified Inverse Distance Method: i = 1, 2, …, n where  Ei = elevation difference between the i-th index station and the point of estimation. a,b = constant Issue: How to determine the "best" values for "a" and "b"?

Optimization Methods Minimize (Min. Absolute Deviation, MAD, Criterion) Subject to a i  0, i = 1, 2, …, n; U j, V j  0, j =1, 2, …, J where P ij = rainfall amount for the j-th storm event at the i-th index station; J = total number of storm events; U j, V j = over- and under-estimation for event j The above MAD objective function can be replaced by the least square criterion as Minimize Any other goodness-of-fit criteria we can use?

Isohyetal/ Kriging Methods Isohyetal Method: Estimate point rainfall depth by first construct equal rainfall contour map (see HK annual total rainfall isohyetal maps) Kriging Method: - A geostatistical method originally developed in mining engineering by Krige. - The method is appropriate for dealing with random field having non-repeated observation at different locations in space. - Preserve the spatial correlation structure of observed data. - Optimal weight factors, a i ’s, are determined to minimize the mean-squared-error at the point of estimation. - The by-product of the method is to produce error map of estimation.

Areal Rainfall Analysis Rainfall gauges provides point measurements of rainfall amount (in terms of depth). In some hydrologic applications, spatial variation or average depth of precipitation over a given area is needed. Equivalent Uniform Depth (EUD): Depth of water that would result if all of the precipitation received were uniformly distributed over the designated area. Methods for Estimating Mean Areal Rainfall: - Basic Idea : where P = EUD ; Pi = rainfall depth at station i ; ai = weighting factor for station i, 0  ai  1, and n = total number of stations (or gauges)

Arithmetic Average Method : where n = number of rain gauges within the designated area. Thiessen Polygon Method: · Attempt to define the area represented by each gage in order to weigh the effects of non-uniform rainfall distribution. · Procedure : (1) Connecting lines of gages are drawn. (2) Draw perpendicular bisectors of these connecting lines. (3) Determine the area of each polygon, A i, where = total area of interest (4) · Limitations : (1) Inflexible – new polygon is needed if there is any change in the number of gages or the position of gages. (2) Does not consider orographic influences. Arithmetic Average/Thiessen Polygon Methods

Isohyetal Method/Others Isohyetal Method · The method is generally considered to be the most accurate scheme to compute the EUD of rainfall over a drainage area. · Procedure : (1) Contours of equal precipitation (isohyet) are constructed. (2) Areas between successive isohyets are measured, Ai. (3) Average precipitation depth between isohyets are computed, Pi. (4) The basin–wide EUD of rainfall is The procedure is subjective in the sense of interpolating precipitation depth between gages. Usually, linear interpolation is used. The accuracy of the analysis heavily depends on the analyst’s skill. Other Methods: Trend Surface Analysis, Kriging Method, Hypsometric Method (see Shaw, 1994, p.211), and Multiquadric Method (see Shaw, 1994, p.212).

Examples

Depth-Area Relation Area (km 2 ) ARF The DAD analysis is devised to determine the greatest precipitation amounts for various size areas and durations over different regions and for certain seasons. The resulting DAD relationship is primarily to be used for determining a hypothetical storm event for designing hydraulic structures. Area-Reduction Factor (ARF): Allow estimating areal EUD of rainfall from point rainfall. For Hong Kong, a recommended ARF values are (Task 2 Report – Territorial Land Drainage & Flood Control Strategy Study: Phase I, 1989, by Mott MacDonald HK Limited for HKSAR Drainage Services Department)

DAD Reduction Relations