4.3.  In eukaryotic cells, genetic material in the nucleus is divided EQUALLY between two daughter nuclei. THIS IS CALLED MITOSIS (involves nuclei division)

Slides:



Advertisements
Similar presentations
Meselson & Stahl In 1950, Matthew Meselson and Franklin Stahl grew E.coli bacteria in a 15 N rich environment. They then transferred the E.coli into a.
Advertisements

3.1 & & 7.2.  Genetic information is stored in molecules called nucleic acids.  There are 2 types of nucleic acids  DNA: deoxyribonucleic acid.
DNA Replication.
AP Biology Chapter 16 part 2
DNA REPLICATION.
DNA REPLICATION We know we need to copy a cells DNA before a cell can divide, but how is DNA copied? There were 3 possible models for DNA copies to be.
 All cells undergo DNA replication and cell division in order to give rise to a new generation of cells Mitosis- Division of the nucleus of a eukaryotic.
DNA Replication Pg Last Day…  DNA = 2 strands that run anti-parallel to one another –1 strand: 5’ to 3’ –2 strand: 3’ to 5’ –3’ end terminates.
5.2 DNA Replication SBI4U1. Humans rely on the continual regeneration of cells ( ie. Especially during injury) – Examples: Humans begin as a single fertilized.
3.A.1 DNA and RNA Part II: Replication cases DNA, and in some cases RNA, is the primary source of heritable information. DNA, and in some cases RNA, is.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings The Basic Principle: Base Pairing to a Template Strand Since the two strands of.
DNA Replication. What is DNA replication? When does it happen? DNA replication is the process by which the DNA molecule duplicates itself to create identical.
NOTES: CH 16 (part 2) – DNA Replication and Repair.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings DNA Replication chapter 16 continue DNA Replication a closer look p.300 DNA: Origins.
Molecular Genetics 2: DNA Replication WHAT IS DNA REPLICATION? The process of making two identical DNA molecules from an original, parental DNA molecule.
16.2 DNA Replication. DNA in Prokaryotes and Eukaryotes Prokaryotes: –ring of chromosome –holds nearly all of the cell’s genetic material.
11 Chapter 16 The Molecular Basis of Inheritance “We wish to suggest a structure for the salt of deoxyribose nucleic acid (DNA). This structure has novel.
DNA REPLICATION SBI4U Ms. Manning. DNA Replication  Produces two identical copies of the chromosome during S phase of interphase  Catalyzed by many.
© 2012 Pearson Education, Inc DNA Is Reproduced by Semiconservative Replication.
DNA REPLICATION. What does it mean to replicate? The production of exact copies of complex molecules, such as DNA molecules, that occurs during growth.
DNA Replication IB Biology HL 1 Mrs. Peters Spring 2014.
Do Now!!  Why must DNA be replicated?  Where do you think replication takes place?  Are mistakes ever made while replicating DNA?  Why must DNA be.
DNA Replication Section 4.3 Page 217 Why do we need to replicate our DNA? When does DNA replication occur in a cell?
DNA REPLICATION TOPIC 3.4 & 7.2. Assessment Statements Explain DNA replication in terms of unwinding the double helix and separation of the strands.
DNA Replication during cell division in eukaryotic cells, the replicated genetic material is divided equally between two daughter cells. it is important.
3.4 & 7.2 DNA Replication Pp 16 – 19 & Pp 58 – 60 &
Protein Synthesis 3 major processes: – Replication → DNA copied to form 2 new DNA molecules Nucleus – Transcription → DNA info copied to RNA Nucleus –
DNA replication.
DNA Replication Lecture 11 Fall Read pgs
Molecular Genetics. DNA Review! Has shape of helix or corkscrew Is about 2 nm in diameter 2m of it in a nucleus!! Makes a complete helical turn ever 3.4.
7.2 DNA Replication Assessment Statements: I know that DNA replication occurs in a 5’ 3’ direction. I can explain the process of DNA replication in prokaryotes.
DNA Replication 20.1 part 2. DNA replication Earlier on in this unit we learned about mitosis or cell division. In order for mitosis to occur and chromosomes.
Double Helical Structure of DNA  It is a ladder like structure which is made up of poly nucleotide chains spirally coiled on a central axis.  The two.
DNA REPLICATION C T A A T C G GC A CG A T A T AT T A C T A 0.34 nm 3.4 nm (a) Key features of DNA structure G 1 nm G (c) Space-filling model T.
Molecular Genetics DNA Replication. DNA replication is essential in order for mitotic cell division to occur Is DNA replication semi-conservative or conservative?
DNA Replication 6.4. DNA Replication DNA replication is essential for cell division is DNA replication semi-conservative or conservative?
DNA Replication 6.4. DNA Replication DNA replication is essential in order for mitotic cell division to occur is DNA replication semi-conservative or.
DNA Replication 6.4. DNA Replication DNA replication is essential for mitotic & meiotic cell division Is DNA replication semi-conservative or conservative?
 Genetic information is stored in molecules called nucleic acids.  There are 2 types of nucleic acids  DNA: deoxyribonucleic acid ◦ Double stranded.
The Central Dogma of Molecular Genetics Replication DNA Transcription RNA Translation protein.
Do Now  What is replication?  Where does this take place?
DNA Replication How does each cell have the same DNA? How is a prokaryote different than a eukaryote?
DNA Replication the big event during S phase. The Animation hill.com/sites/ /student_view0/chapter14/animations.html#
DNA Replication.
BIOLOGY 12 DNA Replication.
General Animal Biology
copyright cmassengale
DNA Structure & Replication
DNA Replication 2.7 & 7.1.
DNA Replication.
DNA REPLICATION.
copyright cmassengale
DNA Replication.
The Basic Principle: Base Pairing to a Template Strand
copyright cmassengale
copyright cmassengale
DNA REPLICATION AND REPAIR
DNA Replication Foldable
5 end 3 end 3 end 5 end Hydrogen bond 3.4 nm 1 nm 0.34 nm (a)
BIOLOGY 12 DNA Replication.
DNA REPLICATION.
DNA Replication & Repair
REPLICATION © 2016 Paul Billiet ODWS.
DNA Replication Unit 6 Topic 2
DNA REPLICATION.
DNA and Replication.
DNA Replication and Repair - INTRO
DNA Replication Making copies.
copyright cmassengale
Dna replication SBI4U.
Presentation transcript:

4.3

 In eukaryotic cells, genetic material in the nucleus is divided EQUALLY between two daughter nuclei. THIS IS CALLED MITOSIS (involves nuclei division)  The cell is split into two (along with the new nuclei) Cytokinesis: the CYTOPLASM is split into two (along with the new nuclei)

Mitosis:  occurs in SOMATIC cells. Somatic cell: every cell in a multicellular organism EXCEPT for the sex cells. Essential for growth of tissue, growth of a fetus/child, skin cell replacement, repair of damaged tissue, etc.  Meiosis: Occurs in the sex cells (eggs and sperm) The egg cell and sperm cell each contribute to ½ the DNA to make offspring.

 Going back to the cell theory... Every cell originates from another cell.  How does this happen!?  Each daughter cell (new skin cell) has an exact copy of the parent cell’s DNA.  The DNA must be able to replicate.  each of the complimentary DNA strands can act as a TEMPLATE to build another complimentary strand, resulting in two identical DNA molecules.

 What was known: DNA was the hereditary molecule. DNA had to replicate somehow.  Question: Was the parental DNA split between the two daughter cells? Did one daughter cell contain the DNA from the parent as the other contained copies of that parent?

This diagram is in your textbook. Can you point out what is wrong with it?! (Think critically. Don’t believe everything that you see/hear)

 Came up with a clever experiment to suggest that DNA replicated in a SEMICONSERVATIVE way Half of the parental DNA was in each daughter cell.  E. coli was grown in 15 N (______ nitrogen) The organism would use the form of N available when it forms new DNA. Nitrogen is a major component of _____________. Reproduced by division for 17 generations. Both DNA strands were labelled with 15 N.  Transferred this ________ N – containing strain to a ‘normal’ 14 N medium and let the bacteria multiply.  Extracted DNA from E.coli and centrifuged after each generation of growth. Used DENSITY GRADIENTS of the DNA to determine if conservative or semiconservative.

The centrifuged test tubes of each generation would show the following results: First generation: A ‘heavy’ band and a ‘light’ band, both of approximately equal widths. Second generation: A ‘heavy’ band and a ‘light’ band, with the ‘light’ band being 3X the width of the heavy band.

First generation: Only one intermediate band. Second generation: One light band and one intermediate band of equal width.

a) before being switched to normal N. b) First generation of being normal N. c) Second generation of being in normal N. THEREFORE, REPLICATION OCCURS ________________.

 Prokaryote One circular chromosome Replication is simpler than in eukaryotes. One origin of replication.  Eukaryote Many chromosomes in strand form Replication is similar to prokaryotes but more complex. Many origins of replication

1) Separating the DNA strands 2) Building the complimentary strands

Goal: to expose a template strand.  DNA helicase unwinds the double helix by breaking the H bonds between complementary base pairs.  Single-stranded binding proteins (SSBs): Anneal: pairing of complementary strands of DNA through hydrogen bonding. The two strands have a natural propensity to anneal. SSBs bind to DNA strands and block H-bonding.  DNA gyrase Relieves tension of unwinding DNA Works by cutting both strands of DNA, strands can swivel around each other, and then resealed.

 Replication begins in two direction from the origin(s) as the region of DNA is unwound. Cannot be fully unwound: DNA is large compared to the cell. It’s just packed really tight when not replicating.  Diameter of cell: 5um.  Length of human chromosome: 1 cm (2000 x)  Replication fork: the region where the enzymes replicating a DNA molecule are bound to untwisted, single-stranded DNA. Eukaryotes: usually multiple replication forks on DNA molecule  rapid replication Prokaryotes: usually only one point of origin.  DNA replication proceeds toward the direction of the replication fork in one strand, and away from the replication fork in the other.  Replication bubble: when two replication forks are near each other.

Eventually, the replication bubbles fuse and two daughter DNA molecules are formed.

 Prokaryotes: DNA polymerase I, II, and III: enzymes for replication and repair. DNA polymerase III: responsible for synthesizing complementary strands of DNA during replication.  Eukaryotes: five DNA polymerases.

 DNA polymerase cannot initiate a complimentary strand on its own. Requires a 3’ starting point.  temporary base pairs of DNA annealed to the template strand by primase.  NOW DNA polymerase III can start elongation of the complementary strand.

 Synthesizes DNA in 5’  3’ direction.  Adds free deoxyribonucleoside triphosphates to the 3’ end. Deoxyribonucleoside triphosphates: free bases in the nucleoplasm.  Energy for building the complimentary strand? Bond between first and second phosphate is broken. Drives the dehydration synthesis: adding complementary nucleotide to the elongating strand. Two phosphates recycled.

 Template strands run antiparallel  Leading strand: the new strand of DNA that is synthesized continuously. uses the 3’  5’ template strand as guide. Built towards the replication fork. Can be built continuously.  Lagging strand: the new strand of DNA that is synthesized in short fragments, which are later joined together. uses the 5’  3’ template strand as guide. Built away from the replication fork. Must be built in short fragments...

 Short fragments of DNA that are a result of the synthesis of the lagging strand.  Primers must be continuously added near the replication fork.  DNA polymerase III builds okazaki fragments.

 Removes RNA primers from the leading and lagging strand.  Replaces them with appropriate deoxyribonucleotides.

 Joins Okazaki fragments into one strand by the creation of a phosphodiester bond. THE TWO NEW STRANDS OF DNA ARE SYNTHESIZED AND AUTOMATICALLY TWIST INTO A HELIX.

 DNA polymerase I and III act as quality control checkers ‘proofread’ newly synthesized strand.  Woops! There’s a mistake! Either enzyme can act as an EXONUCLEASE. Backtracks, excises the incorrect nucleotide, and replaces it. If error missed by exonuclease, may be corrected by one of the several repair mechanisms that operate after the completion of DNA replication.

V62zrm2P0&feature=related

 Look at the summary on page 222. Make sure you understand every point, and the diagram shown.  Page 223, #1-8.