Probability Three basic types of probability: Probability as counting

Slides:



Advertisements
Similar presentations
Clear your desk for your quiz. Unit 2 Day 8 Expected Value Average expectation per game if the game is played many times Can be used to evaluate and.
Advertisements

Probability and Statistics
1 Copyright © Cengage Learning. All rights reserved. 4 Probability.
Probability of Compound Events
How likely something is to happen.
Take out a coin! You win 4 dollars for heads, and lose 2 dollars for tails.
Bell Work 35/100=7/20 15/100 = 3/20 65/100 = 13/20 Male
Math notebook, pencil, and possibly calculator. Definitions  An outcome is the result of a single trial of an experiment.  The sample space of an experiment.
Describing Probability
Probability and Chance By: Mrs. Loyacano. It is CERTAIN that I pull out a black marble.
Probability And Expected Value ————————————
Math 310 Section 7.2 Probability. Succession of Events So far, our discussion of events have been in terms of a single stage scenario. We might be looking.
Algebra1 Independent and Dependent Events
Bell Work: Factor x – 6x – Answer: (x – 8)(x + 2)
Problem A-16 If Set X = {13,19,22,26,37} and Set Y = {8,19,37,44,103}, what is the intersection of sets x and y?
What is the probability of the following: Answer the following: 1. Rolling a 4 on a die 2. Rolling an even number on a die 3. Rolling a number greater.
Independent and 10-7 Dependent Events Warm Up Lesson Presentation
Bell Work Suppose 10 buttons are placed in a bag (5 gray, 3 white, 2 black). Then one is drawn without looking. Refer to the ten buttons to find the probability.
X of Z: MAJOR LEAGUE BASEBALL ATTENDANCE Rather than solving for z score first, we may be given a percentage, then we find the z score, then we find the.
Probability: Simple and Compound Independent and Dependent Experimental and Theoretical.
Bell Quiz.
Review of Probability.
CONFIDENTIAL 1 Algebra1 Theoretical Probability. CONFIDENTIAL 2 Warm Up 1) choosing a heart. 2) choosing a heart or a diamond. An experiment consists.
Copyright © Ed2Net Learning Inc.1. 2 Warm Up Use the Counting principle to find the total number of outcomes in each situation 1. Choosing a car from.
The probability that it rains is 70% The probability that it does NOT rain is 30% Instinct tells us that for any event E, the probability that E happens.
Warm-Up 1. What is Benford’s Law?
Notes on PROBABILITY What is Probability? Probability is a number from 0 to 1 that tells you how likely something is to happen. Probability can be either.
Chapter 1:Independent and Dependent Events
Warm Up Find the theoretical probability of each outcome 1. rolling a 6 on a number cube. 2. rolling an odd number on a number cube. 3. flipping two coins.
Warm Up Find the theoretical probability of each outcome
Chapter 9 Review. 1. Give the probability of each outcome.
Warm-Up A woman and a man (unrelated) each have two children .
1.4 Equally Likely Outcomes. The outcomes of a sample space are called equally likely if all of them have the same chance of occurrence. It is very difficult.
7th Probability You can do this! .
7.4 Probability of Independent Events 4/17/ What is the number of unique 4-digit ATM PIN codes if the first number cannot be 0? The numbers to.
Math I.  Probability is the chance that something will happen.  Probability is most often expressed as a fraction, a decimal, a percent, or can also.
WOULD YOU PLAY THIS GAME? Roll a dice, and win $1000 dollars if you roll a 6.
Warm Up Find the theoretical probability of each outcome
BACK to the BASICS Roll ‘Em COUNT Me In Multiplier?Grab.
Probability.
Answer Question Larry tosses a fair coin 4 times. What is the probability that all 4 tosses land heads? Start.
What is the probability of two or more independent events occurring?
Multiplication Rule Statistics B Mr. Evans. Addition vs. Multiplication Rule The addition rule helped us solve problems when we performed one task and.
Making Predictions with Theoretical Probability. Warm Up You flip a coin three times. 1.Create a tree diagram to find the sample space. 2.How many outcomes.
3.4 Elements of Probability. Probability helps us to figure out the liklihood of something happening. The “something happening” is called and event. The.
Warm Up: Quick Write Which is more likely, flipping exactly 3 heads in 10 coin flips or flipping exactly 4 heads in 5 coin flips ?
Probability Quiz. Question 1 If I throw a fair dice 30 times, how many FIVES would I expect to get?
Independent and Dependent Events Lesson 6.6. Getting Started… You roll one die and then flip one coin. What is the probability of : P(3, tails) = 2. P(less.
Warm Up What is the theoretical probability of rolling a die and landing on a composite number?
 What do you think it means for an event to have a probability of ½ ?  What do you think it means for an event to have a probability of 1/4 ?
Expected Value and Fair Game S-MD.6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). S-MD.7 (+) Analyze.
Basic Probabilities Starting Unit 6 Today!. Definitions  Experiment – any process that generates one or more observable outcomes  Sample Space – set.
Warm-Up #9 (Tuesday, 2/23/2016) 1.(Use the table on the left) How many students are in the class? What fraction of the students chose a red card? ResultFrequency.
CP Math 12-4 Conditional and Unconditional Probability. (Sequential events)
Warm Up Find the theoretical probability of each outcome
Essential Ideas for The Nature of Probability
Adding Probabilities 12-5
Statistics Terms Statistics Formulas Counting Probability Graphs 1pt
4.5 – Finding Probability Using Tree Diagrams and Outcome Tables
Probability Practice Problems
Jeopardy Review Q Theoretical Probability
Multiply the probability of the events together.
8th Grade Chapter 12 Data Analysis and Probability
Expected Value.
Probability and Chance
Probability.
Expected Value.
video WARM-uP Lesson 33 + brain break Exit card
“And” Probabilities.
Independent and 10-7 Dependent Events Warm Up Lesson Presentation
Presentation transcript:

Probability Three basic types of probability: Probability as counting Probability as geometry Probability as Algebra

Probability as counting

Example #1 Find the probability that when two standard 6-sided dices are rolled, the sum of the numbers on the top faces is 5. # of total outcomes: 6 * 6 /2 = 18 (regardless of sequence) # of successful outcomes: 1,4; 2,3 (regardless of sequence) Answer = 2 / 18 = 1/9

Example #2 A bag contains 16 marbles, 4 of which are blue and 12 of which are green. Two marbles are randomly pulled from the bag at the same time. What is the probability that both marbles are blue? # of total outcomes: 16*15/2 = 120 (regardless of sequence) # of successful outcomes: 4*3/2 = 6 (regardless of sequence) Answer = 6 / 120 = 1/20

Probability as geometry

Example #3 Lawrence parked his car in a parking lot at a randomly chosen time between 2:30PM and 4:00 PM. Exactly half an hour later he drove his car out of the parking lot. What is the probability that he left the parking lot after 4:00 PM? Answer = 1/3

Example #4 If 1 ≤ x ≤ 4 and 2 ≤ y ≤ 6, find the probability that x + y ≥ 5. For 1 ≤ x ≤ 4, 2 ≤ y ≤ 6, we can draw: For x + y = 5, we can draw: 6 2 1 4

Example #4 Area of triangle: 2*2 * ½ = 2 Area of shaded: 3*4 – 2 = 10 Total area: 3 * 4 = 12 Answer = (area of shaded)/(total area) = 10/12 = 5/6

Probability as algebra If you can identify enough relationships among those related probabilities, you might consider solve the problem algebraically.

Example #5 Let X be the probability to rain on Tuesday If the probability that it rains next Tuesday in Seattle is twice the probability that it doesn’t, what is the probability that it rains next Tuesday in Seattle? Let X be the probability to rain on Tuesday We conclude: X + X/2 = 1 ------------ (1) (Note: Total probability is always 1) Solve X from (1), we get: X = 2/3

Example #6 Johnny and Michael play a game in which they take turns rolling a pair of fair dice until one of them rolls “snake eyes” (both dice show 1’s). That person is the winner. If Johnny goes first, what is the probability that Johnny wins the game? Probability for J won in first round is: 1/36 Probability for J won in second round is: (35/36) * (35/36) * (1/36) Probability for J won in third round is: (35/36) * (35/36) * (35/36) * (35/36) * (1/36)

Example #6 Johnny and Michael play a game in which they take turns rolling a pair of fair dice until one of them rolls “snake eyes” (both dice show 1’s). That person is the winner. If Johnny goes first, what is the probability that Johnny wins the game? Probability for J to win is: 1/36 + 1/36 * (35/36)2 + 1/36 * (35/36)4 + 1/36 * (35/36)6 + … Let S = 1 + (35/36)2 + (35/36)4 + (35/36)6 + … We get S = 1 + (35/36)2 * (1 + (35/36)2 + (35/36)4 + …) Hence S = 1 + (35/36)2 * S Solve for S, we can get: S = 36 * 36 / 71 Thus the answer = (1/36) * S = 36/71

Basic Principal of Probability Probability of compound events: (i.e. a series of events) If a compound event E that can be completed in three steps, A, B, and C, and the probability to complete each step is a, b, and c, then the probability of E is a * b * c.

Basic Principal of Probability Probability of exclusive events: (or alternative approaches) If a task E can be achieved via three different approaches A, B, and C, each with probability of success of a, b, and c. Then the probability of E to be successful is a + b + c.

Example #7 Four green cards and three red cards are placed in a bag and selected at random. 1) What is the probability of selecting two red cards without replacement? 2) What is the probability of selecting a green card then a red card with replacement? 3) What is the probability of selecting three cards of the same color without replacement?

Example #7 Four green cards and three red cards are placed in a bag and selected at random. 1) What is the probability of selecting two red cards without replacement? 2) What is the probability of selecting a green card then a red card with replacement? 3) What is the probability of selecting three cards of the same color without replacement? 1) Two steps to get two red cards. Prob. of 1st step: 3/7; prob. of 2nd step: 2/6 Thus the answer: 3/7 * 2/6 = 1/7 2) Two steps to get two red cards. Prob. of 1st step: 4/7; prob. of 2nd step: 3/7 Thus the answer: 4/7 * 3/7 = 12/49 3) Prob. of 3 red: 3/7 * 2/6 * 1/5 Prob. of 3 green: 4/7 * 3/6 * 2/5 Thus the answer: 4/35 + 1/35 = 5/35 = 1/7

Example #7 Four green cards and three red cards are placed in a bag and selected at random. 1) What is the probability of selecting two red cards without replacement? 2) What is the probability of selecting a green card then a red card with replacement? 3) What is the probability of selecting three cards of the same color without replacement? Alternatively, the problem can also be solved via counting. 1) Total # of outcome: 7*6/2 = 21 Desired # of outcome: 3*2/2 = 3 Answer: 3/21 = 1/7 2) Total # of outcome: 7*7/2 Desired # of outcome: 4*3/2 Answer: 12/49 3) Total # of outcome: 7*6*5 / (3*2*1) = 35 Desired # of outcome: (g) 4!/3! + (r) 3!/3! = 5 Answer: 5/35 = 1/7

Compound events and counting combined Example #8 Three fair dice are rolled. What is the probability that exactly two of the rolls show a 1? For one dice, prob. of showing 1 is: 1/6 For 11X (X ≠ 1) the prob. is 1/6 * 1/6 * 5/6 Note that 11X, 1X1, and X11 have equal prob. Thus the answer = 3 * (1/6) * (1/6) * (5/6) = 5/72

Probability and combination When objects are put into different groups, consider to use the formula: (# of desired group) ------------------------------ * (# of groups to pick) (# of total groups)

Probability and combination Example #9 digits 1 through 9 are divided into three sets of three digits. What is the probability that the product of one of the sets is odd? Total # of groups: C(9,3) = (9*8*7) / (3*2) = 84 # of desired groups (groups with odd #s only): (5*4*3) / (3 * 2) = 10 There are 3 groups to be formed Thus the answer = (10 / 84) * 3 = 5/14

Complimentary counting & probability When too many cases needs to be counted, consider use complimentary counting, and subtract the result from 1.

Complimentary counting & probability Example #10 Three coins are flipped. What’s the probability of flipping at least one heads and at least one tail? Total # of outcome: 23 = 8 # of cases for all heads: 1 # of cases for all tails: 1 Prob. of all heads or all tails: 2/8 = ¼ Thus the answer = 1 – ¼ = 3/4

Expected Values Expected values = Average value of all possible outcome

Expected Values Example #11: There are $1 and $5 bills in a bag. The expected value for a randomly selected bill is $1.20. What is the fewest # of bills that could be in the bag? Let x be # of $1 bills, and y be # of $5 bills. The total value is x + 5y, and # of bills is x + y Thus we have (x + 5y) / (x + y) = 1.2; and we get 3.8 y = 0.2 x; or y/x = 19/1 Thus the smallest # for x is 1, and smallest # for y is 19. The fewest # of bills is x + y = 20.

Conditional probability Let Pa&b = probability of event A & B occurs Let Pb = probability of event B occurs Let Pa/b = probability of event A if event B occurs Pa&b Pa/b = ------------------- Pb

Conditional probability Example #12: Suppose I have two cards, one with a blue side and a red side, the other with two red sides. I choose one card at random, and placed it on the table. The side on top is red. What’s the probability that the other side is also red? Total # of cases (with red top-face): 3 ( 1 with blue-red card, 2 with red-red card.) # of desired cases: 2 (under the condition that top face is red) Thus the answer = 2/3

Conditional probability Example #12: Suppose I have two cards, one with a blue side and a red side, the other with two red sides. I choose one card at random, and placed it on the table. The side on top is red. What’s the probability that the other side is also red? Probability of red top & bottom: 1/2 Probability of red on top: 3/4 Conditional probability: ½ / ¾ = 2/3

Alternative counting Example #13: A fair coin is to be tossed ten times. Find the probability that heads never occur on consecutive tosses. Let Sn = # of desired outcome with n toss. Observe that a tail must occur in one of the first two toss. If the first toss is tail, then there are Sn-1 outcomes from the next n-1 tosses. If the first toss is head, then there are Sn-2 outcomes from the next n-2 tosses. And we have Sn = Sn-1 + Sn-2

Alternative counting Observe that: S1 = 2; S2 = 3; Example #13 A fair coin is to be tossed ten times. Find the probability that heads never occur on consecutive tosses. Observe that: S1 = 2; S2 = 3; we get: S3 = 2 + 3 = 5 S4 = 3 + 5 = 8 S5 = 5+8 = 13 … … S10 = S8 + S9 = 55 + 89 = 144 Total # of outcome: 210 Answer = 144 / 210 = (24 * 3 * 3)/210 = 9/64

Alternative counting Example #13 A fair coin is to be tossed ten times. Find the probability that heads never occur on consecutive tosses. Total # of outcome: 210 Now count the desired outcome: Observe that there must be at least 5 tails. Otherwise there will be at least 6 heads, and at least two of them will be next to each other. Consider the case there are 5 tails, then the 5 heads must be in any of the “ _” slots under _ T _ T _ T _ T _ T _. There are 6 slots for 5 heads. The total # is: C(6, 5) = (6*5*4*3*2) / 5! = 6

Alternative counting Example #13 A fair coin is to be tossed ten times. Find the probability that heads never occur on consecutive tosses. Consider the case there are 6 tails, then the 4 heads must be in any of the “ _” slots under _ T _ T _ T _ T _ T _ T _. There are 7 slots for 4 heads. The total # is: C(7, 4) = (7*6*5*4) / 4! =35 Continue this pattern, we got: # of desired outcome = C(6,5) + C(7,4) + C(8,3) + C(9,2) + C(10, 1) + C(11,0) = 6 + 35 + 56 + 36 + 10 + 1 = 144 Answer = (# of desired outcome) / (total # outcome) = 144 / 210 = 9/64 .