PHYS 206 The Sun Sol PHYS 206 Solar Data Mass (kg)1.989x10 30 Mass (Earth = 1)332,830 Equatorial radius (km)695,000 Equatorial radius (Earth = 1)108.97.

Slides:



Advertisements
Similar presentations
The Sun The Sun is a star. The Sun is a star. It is 4,500 million years old It is 4,500 million years old It takes 8 minutes for its light to reach.
Advertisements

The Sun 6.E.1.2 Explain why Earth sustains life while other planets do not based on their properties (including types of surface, atmosphere.
The Sun 6.E.1.2 Explain why Earth sustains life while other planets do not based on their properties (including types of surface, atmosphere.
 How Many Stars are in our Solar System???? a.Hundreds b.Millions c.Billions Explain why you chose the answer you picked.
The Sun – Describe characteristics of the Sun (S6C3PO2 high school)
Chapter 8 The Sun – Our Star.
The star we see but seldom notice
1 March 2005AST 2010: Chapter 14 1 The Sun: A Garden -Variety Star.
The Sun The Sun in X-rays over several years The Sun is a star: a shining ball of gas powered by nuclear fusion. Luminosity of Sun = 4 x erg/s =
The sun and our solar system Grade 9 Science Space Part 2.
How The Sun Works Brady Gurley. The Sun: What it’s made of -~70% Hydrogen -~28% Helium -~1.5% Carbon, Nitrogen, & Oxygen -~0.5% Other Elements (Neon,
THE SUN NOTES.
The Sun’s Energy Composition of the Sun
Our Star: The Sun Part I Chapter 16.
Youtube: Secrets of a Dynamic Sun The Sun – Our Star
The Sun. Sun Considered a medium STAR 93,000,000 miles away from Earth 1.39 million kilometers in diameter (one million Earths can fit inside the sun.
THE SUN AND STARS And anything I want to put in here.
The Sun Our Sun Classification: G Temperature: 6000 K Age: 6 Billion Years Old Composition 73.4% Hydrogen 73.4% Hydrogen 25% Helium 25% Helium.
The Sun Earth Science - Mr. Gallagher. The Sun is the Earth's nearest star. Similar to most typical stars, it is a large ball of hot electrically charged.
 The visible light we see is only a small amount of energy coming from various objects.  By studying other forms of energy, astronomers can learn more.
The Sun Our Nearest Star. The Source of the Sun’s Energy The Source of the Sun’s Energy Fusion of light elements into heavier elements. Hydrogen converts.
The Sun. Solar Prominence Sun Fact Sheet The Sun is a normal G2 star, one of more than 100 billion stars in our galaxy. Diameter: 1,390,000 km (Earth.
The Sun The Sun is a star Huge ball of glowing ionized gas… plasma. Gravity vs. Nuclear Fusion Gravity wants to crush the star Fusion wants to explode.
Lesson 3.3: The Sun.
The Sun By Jack. What is the sun? The sun is a star, it is the closest star to Earth and is the centre of our solar system. It is an average star, meaning.
The Sun ROBOTS Summer Solar Structure Core - the center of the Sun where nuclear fusion releases a large amount of heat energy and converts hydrogen.
EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 
The Sun – El Sol – Die Sonne ESPS- Palmer High School.
The Sun’s Size, Heat and Temperature After completing this section, students will explain nuclear fusion, and describe the sun and compare it to other.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2 Chapter 9 The Sun.
Visible Image of the Sun The Sun The Sun Our sole source of light and heat in the solar system A very common star: a glowing ball of gas held together.
The Sun 1 of 200 billion stars in the Milky Way. Our primary source of energy.
The Sun.
Rotation Period = 25 days at the equator & 29 days near the pole Composition = 99% hydrogen and helium State = gaseous (plasma)
By Elisha. » The Sun » The sun is the star in the centre of the solar system in which the earth orbits around and is about 149,600,000 km away from earth.
THE SUN. The Sun The sun has a diameter of 900,000 miles (>100 Earths could fit across it) >1 million Earths could fit inside it. The sun is composed.
Solar Properties Has more than 99% the mass of our solar system Has more than 99% the mass of our solar system Diameter: 1,390,000 km Diameter: 1,390,000.
The Sun Unit 6: Astronomy.
THE SUN Energy from the sun, in the form of sunlight supports all life via photosynthesis, and drives the Earth’s climate and weather.
The Sun – Our Star Our sun is considered an “average” star and is one of the 100 BILLION stars that make up the Milky Way galaxy. But by no MEANS does.
24.3 The Sun Structure of the Sun
The Sun Distance from Earth: 150 million km OR 93 million miles Size: 1.4 million km in diameter Age: 4.5 billion years old, halfway through its 10 billion.
The Magnetic Sun. What is the Sun? The Sun is a Star, but seen close-up. The Stars are other Suns but very far away.
The Solar System. Nebula Theory (our solar system) The solar system started from the spinning and condensing of a cloud of dust and gas. The greatest.
Chapter 14 Our Star.
The Sun By: JGilliam The Sun’s CompositionIdentifying Stars Composition ▪ Hydrogen and Helium together make up 99% of the sun’s mass. ▪ 75% of the sun’s.
The Sun – El Sol – Die Sonne ESPS- Palmer High School.
Unit 8 Chapter 29 The Sun. We used to think that our sun was a ball of fire in the sky. Looking at our sun unaided will cause blindness. The Sun’s Energy.
A105 Stars and Galaxies  Homework 6 due today  Next Week: Rooftop Session on Oct. 11 at 9 PM  Reading: 54.4, 55, 56.1, 57.3, 58, 59 Today’s APODAPOD.
Sun, Moon, Earth, How do they work together to help life survive? our sun.
Our Star the Sun. The Sun – Our Star Our sun is considered an “average” star and is one of the 200 BILLION stars that make up the Milky Way galaxy. But.
THE SUN NOTES. LAYERS of the Interior THE CORE- Nuclear Fusion occurs Diameter- 400,000 km The Radiation Zone- region of compressed gas and energy is.
Our Star: The Sun Part I The Sun’s Exterior Features Chapter 26.
Outer Layers of the Sun Photosphere –Limb darkening –Sun spots Chromosphere Corona Prominences, flares, coronal mass ejections Reading
The Sun The SUN Chapter 29 Chapter 29.
Chapter 29. Sec 1 Structure of the sun People believed the sun’s energy came from fire They believed the sun burned some type of fuel to produce energy.
The Sun Magnetic Fields and Charged Particles Magnetic fields Charged particles are affected by magnetic fields They are forced to follow magnetic field.
The Sun.
The Sun.
Sun Notes.
Measuring the Astronomical Unit
What is the fate of our sun and other stars?
The Sun *Our closest star
24.3 – The Sun.
The Sun.
The Sun’s Layers and Solar Activity
Measuring the Astronomical Unit
Astronomy 04 Astronomy 04 The Solar System Chapter 15:
The Centre of the Solar System Earth Science 11
The sun gives off tremendous amounts of energy
Presentation transcript:

PHYS 206 The Sun Sol

PHYS 206 Solar Data Mass (kg)1.989x10 30 Mass (Earth = 1)332,830 Equatorial radius (km)695,000 Equatorial radius (Earth = 1) Mean density (gm/cm 3 )1.410 Surface gravity (m/s 2 )273 Rotational period (days)25-36 Escape velocity (km/sec) Luminosity (ergs/sec)3.827x10 33 Apparent Visual Magnitude-26.8 Absolute Visual Magnitude+4.8 Spectral ClassG2 V Mean surface temperature5,800°C Age (billion years)4.5 Principal chemistry (by mass) Hydrogen73.4% Helium25.0% Oxygen 0.8% Carbon 0.3% Iron 0.2% Nitrogen 0.1% Silicon 0.07% Neon 0.05% Magnesium 0.06% Sulfur 0.04% All others 0.2%

PHYS 206 Sun’s Surface Three major parts: Photosphere, Chromosphere and Corona Photosphere: What we observe when we look at the Sun. 96 % of the light we are receiving from the Sun comes from the top 400 kms of the Sun. We can learn the temperature, pressure and density from the spectrum. T is about 5000 K. Pressure is about 1/100 of sea level. Density is about 1/10000 of sea level.

PHYS 206 Chromosphere First discovered during Solar Eclipses. Thin colorful layer, hence the name chromo (color) sphere. Today -> we use a device called Coronagraph The light comes from H - ions and Helium. Thickness of the chromosphere is 2,000-3,000 kms.

PHYS 206 Spicules in the Atmosphere The temperature in the atmosphere increases with distance (not what you would expect) At the top of the chromosphere the temperature is about 10,000 K. In the region between the corona and the chromosphere the temp goes from 10,000 K to 1,000,000 K within a few kms -> transition region. The transition region is found at different heights above the chromosphere. The existence of jet-like spikes called the spicules might explain this phenomenon.

PHYS 206 Corona Corona is what the scientists are after during a Solar Eclipse. Question: Why are they so interested in the corona? Answer: Because the temperature is over one million degrees in the corona.

PHYS 206 Corona Properties The temperature of the corona is more than 1,000,000 K. The corona extends for millions of kms. (reaches beyond the Earth) Gives out only half as much light as a full moon. Very low density (1/10,000,000,000 of sea level) But because of the high T, the corona is an X-ray source. Dark regions in the X-ray, Coronal Holes -> no trapping of corona by magnetic field.

PHYS 206 Temperatures in the Solar Atmosphere 5,000 K at the photosphere Rises to 100,000 K in the chromosphere In the transition region within few kms the temperature increases to 1,000,000 K Density of the atoms is very low in the corona -> heat is not “dangerous”, cannot even heat up a cup of coffee. Temperature gradually drops down when we move away from the Sun.

PHYS 206 Solar Wind When you look at the sun using visible light, the corona looks quite uniform. However, if we use X-rays (corona is a source of X-rays), we see that there are patches in the corona -> coronal holes. Coronal holes are cool and quiet, and they are usually located at the poles. Magnetic fields leave the Sun, and then they usually loop back to the Sun trapping the hot gases in these loops -> hot gases radiate light. But if the magnetic field does not loop back (like around the poles), then the hot gases can stream out from the Sun -> Solar Wind. Solar wind is made up of electrons and protons, and has a speed of 400 km/s when it reaches the Earth. The solar wind has two major consequences for us:

PHYS 206 Aurorae Solar wind causes beautiful displays of aurorae, solar particles caught by Earth’s magnetic field. Strong solar winds can also kill satellites, but this is very rare.

PHYS 206 The Active Sun The Sun sustains the life on Earth. Life is very fragile and it takes a long time to develop. Sun has been quite stable for a long time. But stable does not mean quiet. Granulation Sunspots Plages Prominences Solar flares

PHYS 206 Granulation Honeycomb pattern on the Solar surface. Caused by the convection of gas. Brighter parts: Hot gas raising from inside, darker parts cooler gas falling back. Darker regions are K colder than the intergranular regions. 700km-1000kms in diameter. Not just around the sunspots.

PHYS 206 Sunspots Sunspots are cooler regions on the surface of the Sun. About 1500K colder (still 4500K). Diameter is a few 10,000kms. Appear in groups. Even observed by Galileo. Persist for periods ranging from hours to months. Central dark region is called umbra, lighter surrounding region penumbra (just like the Solar Eclipse). Sunspots are associated with strong magnetic fields: In a pair of sunspots, one spot will have N and the other S polarity.

PHYS 206 Solar Rotation Sun rotates around itself. The rotation is in the same sense of the motion of the planets around the Sun. Sun is not a solid body, different parts rotate differently. We use the sunspots to calculate the speed of rotation. Period at the equator is 25 days, near the poles 36 days.

PHYS 206 Sunspot Cycle

PHYS 206 Magnetic Field Sun has a very strong magnetic field – 1000 times as strong as Earth’s. Just like the Earth, the Sun also changes magnetic polarity. The period is much shorter, only 11 years. We learn this from the sunspots. For 11 years, the leading sunspots will have the same polarity (N), and then, for the next 11 years they will have the opposite polarity (S). So, actually the period is 22 years… Magnetic fields disrupt the normal processes on the surface of the Sun. Granulation is a normal process, strong magnetic fields hinder bubbling of the hot gas -> if you have strong magnetic fields you will have cooler temperatures -> Sunspots and more...

PHYS 206 Plages Plages are cloud-like features above the photosphere. Can only be imaged using hydrogen or calcium light. Regions surrounding the sunspots. The density is higher. Hydrogen and calcium are more excited than their surroundings.

PHYS 206 Prominences Bright clouds of gas following the magnetic field lines. Can last for many hours, even days. Eruptive prominences are shot up at 700km/s. Origin is unknown. Cool and dense regions in the corona. Related to the sunspots and plages, probably caused by strong magnetic fields.

PHYS 206 Solar Flares Solar flares are flares, with temperature around 10,000,000 K. Lasts for a few minutes, and visible light of the Sun does not change much, however the heated gases emit X-rays and ultraviolet. Cause is not well understood. Related to the magnetic fields. Evidence suggests that flares occur when magnetic fields of opposite polarity come together and annihilate each other. During the flares’ violent explosion gases can be thrown into space.

PHYS 206 Coronal Mass Ejections During solar flares coronal material can be ejected at high speeds. Mild ones cause beautiful aurorae. Material with electric charge can affect the ability of the atmosphere to reflect the radio waves and can disrupt the radio communications. In worse situations (happened once) solar flares can cause components in long power lines burn. During this flare some satellites were also dragged to lower orbits.

PHYS 206 Variable Sun Meander Minimum – between Little Meander Minimum early 19 th century. Lower temperatures during the times of lower solar activity. But overall, the output of the Sun changes by less than 0.1% over the years.