12-14 May, 2008SERENA, Santa Fe, NM 1 Mid-IR observations of Mercury’s Surface as related to MERTIS and PEL and BED (and SERENA, of course)

Slides:



Advertisements
Similar presentations
Metamorphic Phase Diagrams
Advertisements

12-14 May, 2008SERENA, Santa Fe, NM 1 Compositional Relationships With the Surface and Crust The exosphere and related SERENA particle experiments.
Johan Warell*, A. Sprague, R. Kozlowski, A. Önehag*, G. Trout, B. Davidsson*, J. Helbert, D. Rothery *Department of Physics and Astronomy, Uppsala University,
Thermobarometry Lecture 12. We now have enough thermodynamics to put it to some real use: calculating the temperatures and pressures at which mineral.
How is the petrography affected by shear zones in the Kohistan complex? Gerold Zeilinger, Laurent Arbaret, Jean-Pierre Burg, Nawaz Chaudhry, Hamid Dawood.
The I1−P1 and C2/c – P21/c displacive phase transitions in Ca-rich plagioclase and pigeonitic pyroxenes, respectively, produce antiphase domains (APDs)
Mercury’s Plains and Volcanism Jake Turner PTYS 395.
Lecture 5 Crystal Chemistry Part 4: Compositional Variation of Minerals 1. Solid Solution 2. Mineral Formula Calculations.
Mercury’s origin and evolution:- Likely evidence from surface composition David A Rothery 1, J Carpenter 2, G Fraser 2 & the MIXS team 1 Dept of Earth.
Igneous Rocks. Classification of Igneous Rocks Most Abundant Elements: O, Si, Al, Fe, Ca, Mg, K, Na Calculate Elements as Oxides (Account for O) How Much.
David Rothery, Dept of Earth & Environmental Sciences With thanks to the ESA Mercury Surface & Composition Working Group Spatial.
The Lunar Reconnaissance Orbiter NASA’s Next First Step To The Moon Noah E. Petro NASA Goddard Space Flight Center May 12 th, 2009.
Mercury’s Surface Composition Kerri Donaldson Hanna.
Pyroxenes Pyroxenes are a major component of the mantle (peridotite is olivine plus pyroxene)
Composition, Physical State and Distribution of Ices at the Surface of Triton Laura Brenneman ASTR688R Project, 12/9/04.
20 November 2006Boston Mercury Observation Workshop Observational Quests for Mercury’s Exosphere Ann L. Sprague Lunar and Planetary Laboratory University.
Mercury: Mid-infrared Spectroscopic Measurements of the Surface A. L. Sprague 1, R. W. Kozlowski 2, K. Boccafolo 2, J. Helbert 3, A. Maturilli 3, and J.
Mercury’s Atmosphere: A Surface-bound Exosphere Virginia Pasek PTYS 395.
1 Tolstoj Quadrangle Mark Robinson and Brett Denevi Arizona State University Scott Murchie, APL MESSENGER GDG Telecon 11/20/2007.
Space Weathering on Mercury By Jake Turner PTYS 395.
Rachel Klima (on behalf of the MASCS team) JHU/APL MASCS/VIRS Data Users’ Workshop LPSC 2014, The Woodlands, TX March 17,2014 MASCS Instrument & VIRS Calibration.
GEOL3045: Planetary Geology Lysa Chizmadia Mercury From Mariner 10 to Messenger Lysa Chizmadia Mercury From Mariner 10 to Messenger.
Geology of the bright sight of the Moon
1/30/20081 MESSENGER First Mercury Flyby First Mercury Flyby January 14, 2008 Speaker: Marilyn Lindstrom Program Scientist, NASA Headquarters NASA Museum.
NASA Lunar Thin Section Collection Laboratory Geological Sciences 50 Planetary Geosciences Group Department of Geological Sciences Brown University Guide.
Solar spectrum, J. W. Draper 1840 John W. Draper ( ) Henry Draper ( ) Courtesy of Smithsonian Institution.
EARTH MATERIALS III Rock-forming minerals: silicates Professor Peter Doyle
1 Nori Laslo Johns Hopkins University Applied Physics Laboratory A NASA Discovery Mission.
Experimental modeling of impact-induced high- temperature processing of silicates. Mikhail GerasimovSpace Research Institute, RAS, Moscow, Russia Yurii.
UV-to-Infrared laboratory spectroscopy facility for planetary solids and surfaces Trans-National Access – TNA B. Schmitt (LPG), J. Helbert (IPR), B. Reynard.
Stoichiometry Chemical Analyses and Formulas Stoichiometry Chemical analyses of oxygen bearing minerals are given as weight percents of oxides. We need.
Ge 101. Introduction to Geology and Geochemistry Lecture 2 Crystal Structure of Minerals.
Clark R. Chapman Southwest Research Inst. Boulder, Colorado Clark R. Chapman Southwest Research Inst. Boulder, Colorado American Geophysical Union meeting.
S. Erard et al. — Workshop 3e zone, Nantes, janvier 2007 Analysis of spectral features in TNO and asteroid spectra S. Erard, D. Despan, F. Merlin.
Clark R. Chapman Southwest Research Inst. Boulder, Colorado Clark R. Chapman Southwest Research Inst. Boulder, Colorado The MESSENGER Mission to Mercury.
Y. Majigsuren, A. Kitakaze and S. Jargalan. I. Western Khubsugul II. Eastern Khubsugul III. Tesiin gol IV. Khanui gol V. Orkhon-Selenge VI. Ugii nuur.
Chapter 10 - B Identification of minerals with the petrographic microscope.
9 May MESSENGER First Flyby Magnetospheric Results J. A. Slavin and the MESSENGER Team BepiColombo SERENA Team Meeting Santa Fe, New Mexico 11 May.
Hydrogen concentration in plagioclase as a hygrometer of magmas: Approaches from melt inclusion analyses and hydrous melting experiments M. Hamada 1 *,
Low-energy Suprathermal Electrons in Mercury’s Magnetosphere George C. Ho, Richard D. Starr, Jon D. Vandegriff, Stamatios M. Krimigis, Robert E. Gold,
Discoveries in Planetary Sciencehttp://dps.aas.org/education/dpsdisc/ Venus May Have Active Volcanism Venus has few impact craters, suggesting the entire.
Eplanation of this presentation The object is to: 1.Link major element chemical variations to a measure of crystallization progress (Mg’). 2.To link major.
Jörn Helbert Planetary Emissivity Laboratory Facing the heat – Obtaining near infrared real emissivity spectra at Venus surface temperatures.
Astronomy 405 Solar System and ISM Lecture 5 Mercury January 25, 2013.
COMPARATIVE TEMPERATURE RETRIEVALS BASED ON VIRTIS/VEX AND PMV/VENERA-15 RADIATION MEASUREMENTS OVER THE NORTHERN HEMISPHERE OF VENUS R. Haus (1), G. Arnold.
Determining the Elemental Composition of the Polar Latitudes of Mars using Gamma Ray Spectroscopy Data from the 2001 Mars Odyssey Investigation Brett Courtright.
The Minerals of Metamorphosed Mafic Rocks Mafic rocks generally have igneous protoliths: basalt and its coarse- grained equivalent, gabbro.
Orthosilicates Isolated tetrahedron Isolated tetrahedron Common examples Common examples Olivine, garnet, and zircon Olivine, garnet, and zircon Al 2 SiO.
Space Weathering on Phobos and Deimos
Goldstone Radar Support for LCROSS Evaluation of Impact Sites Martin Slade October 16, 2006 National Aeronautics and Space Administration Jet Propulsion.
David Rothery, Dept of Earth & Environmental Sciences The Open University With thanks to the ESA Mercury Surface & Composition Working.
Ice At the Moon - How the Moon Mineralogy Mapper on Chandrayaan-1 Will Help Noah E. Petro NASA Goddard Space Flight Center March 4 th, 2009.
Deborah L. Domingue, Mario D’Amore, Sabrina Ferrari, Jörn Helbert, Noam R. Izenberg PHOTOMETRIC PROPERTIES OF MERCURY’S SURFACE AT VISIBLE TO NEAR-INFRARED.
Chandrayaan-2 Large Area Soft X-ray Spectrometer (CLASS)
Mars Noble Gas Experiments
Mineral Analysis of Martian Dunes
M. Lazzarin, S. Marchi Astronomy Dept. Padova
Between a Rock and a Hard Place: Can Garnet Planets Be Habitable?
Introduction to Mineralogy Dr
Magnesium-rich Basalts on Mercury
Magnesium-rich Basalts on Mercury
Akatsuki Mission Update: New Images and Status of the Mission
Igneous Rocks.
Toru Kouyama Supported by SELENE/SP Team HISUI calibration WG
Class 8. Mantle Melting and Phase Diagrams William Wilcock
Lunar reflectance model based on SELENE/SP data
UVIS Satellite surfaces update
Studies of Asteroids from Earth and Space
Mineralogical studies of Silicate stardust in the laboratory A. N
Orbital Identification of Carbonate-Bearing Rocks on Mars
Presentation transcript:

12-14 May, 2008SERENA, Santa Fe, NM 1 Mid-IR observations of Mercury’s Surface as related to MERTIS and PEL and BED (and SERENA, of course)

12-14 May, 2008SERENA, Santa Fe, NM 2 Ann L. Sprague Lunar and Planetary Laboratory, Tucson, AZ, USA With many collaborators over 2 decades: Surface studies: GROUND-BASED--Kozlowski, Donaldson Hanna, Warell, Helbert, Maturilli, Russel, Lynch, Witteborn, Lebofsky, Wooden, Hora, Kasis, Cruikshank, Graps, Deutch MESSENGER--MASCS, GRNS, XRS: Domingue, Vilas, McClintock, Izenberg, Holsclaw, Blewett, Head, Helbert, McCoy, Murchie, Goldsten, Lawrence, Boynton, Feldman, Evans, Nittler, Schlemm, Rhodes, Starr, Robinson, Solomon and the MESSENGER TEAM

12-14 May, 2008SERENA, Santa Fe, NM 3 Ground-based and MESSENGER VIS NIR spectroscopy demonstrated no or very little FeO in Mercury’s regolith Ground-based summary: Vilas et al. (1994) A couple of detections of shallow Fe-bearing clinopyroxene at both N and S at high latitudes, 170º to 230º E Warell et al. (2006) MESSENGER MASCS McClintock et al. Submitted to Science, 2008

12-14 May, 2008SERENA, Santa Fe, NM 4 What might we see with the neutral and ionised particle analyser SERENA (IFSI Italy) coming directly from Mercury’s surface?

12-14 May, 2008SERENA, Santa Fe, NM 5 a.55N, 27S; b.6E, 354W radar spots B and A b. Same c. Same, also Kuiper-Murasaki craters d. Spots B and A e. Same f. Same g. Caloris Basin h. 65N, 155W 0, 125W 9S, 105W i. 35S, 43-73W Sprague et al. 1998

12-14 May, 2008SERENA, Santa Fe, NM 6 atmospheric K emission surface reflection in band continuum Adapted from Potter and Morgan PSS (1997)

12-14 May, 2008SERENA, Santa Fe, NM 7 The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) H. Hiesinger, J. Helbert and the MERTIS Co-I Team

12-14 May, 2008SERENA, Santa Fe, NM 8 Plagioclase in some detail Data from PEL, Berlin Emissivity Database, (Helbert et al. 2006)

12-14 May, 2008SERENA, Santa Fe, NM 9 Credit: NASA/Johns Hopkins University Applied Physics Laboratory /Carnegie Institution of Washington New: There are composition differences between Caloris Basin, dark plains material, and radar bright region “C”

12-14 May, 2008SERENA, Santa Fe, NM 10 MDIS image of region measured in mid-infrared spectral imaging discussed in this paper. This region, also known as radar bright region "C" also has a prominent impact crater centered at 114°E, 11° N and its system of ejecta rays appearing brighter against the darker heavily cratered surface beneath.

12-14 May, 2008SERENA, Santa Fe, NM 11 (left) Goldstone-VLA X-band imaging showing radar-bright region "C" as the dark irregular patch--adapted from Butler et al. (1993). (right) Aricebo S-band dual polarization, delay-Doppler imaging showing same region as heavily cratered. Only the regions north of the "ambiguity line" approximately at the equator are relevant-- reproduced from Harmon et al. (2007). 210º to 270º W Longitude

12-14 May, 2008SERENA, Santa Fe, NM 12 Key to Mineral types on following slides Pyroxenes –(e) enstatite: Mg-rich (h) hypersthene: Mg,Fe –(diop) diopside: Ca,Mg (hed) hedenbergite Fe,Ca Plagioclase Na-rich ~90 down to 30 wgt% Na –(and) andesine Na (olig) oligiclase Na –(lab) labradorite Na,Ca (byt) bytownite Ca,Na Olivine –Mg-rich variety ~70 to 97 wgt% >>>FO(70), FO(97) Garnet –(p) pyrope Mg - variety –(g) grossular Ca-variety

12-14 May, 2008SERENA, Santa Fe, NM 13 bright region "C" data-- black models -- grey wide range of grain sizes 5 options for comparison 4 different opaque phases a) 90 spectral end members 180 spectral end members b) rutile (TiO 2 ) permitted, rutile chosen c) ilmenite permitted (FeTiO 3 ), but ilmenite not chosen d) perovskite (CaTiO 3 ) permitted, perovskite chosen e) troilite (FeS) permitted, troilite chosen

12-14 May, 2008SERENA, Santa Fe, NM 14 Enstatite.1 (Salisbury et al., 1988) SiO TiO Al 2 O Fe 2 O FeO4.79 MnO0.15 MgO35.25 CaO0.85 Na 2 O0.02 K2OK2O Total99.66 Hypersthene.1F (Salisbury et al., 1987) SiO Al 2 O FeO17.07 MgO26.09 CaO1.27 K2OK2O0.02 Na 2 O0.05 TiO MnO0.35 Total orthopyroxene

12-14 May, 2008SERENA, Santa Fe, NM 15 Labradorite.1F (Salisbury et al., 1987) SiO TiO Al 2 O Fe 2 O FeO0.17 MnOnot reported MgO0.05 CaO13.42 Na 2 O3.52 K2OK2O0.23 H2O0.04 Total99.89 Albite.1F (Salisbury et al., 1987) SiO Al 2 O FeO0.01 MgO0.02 CaO0.02 K2OK2O0.20 Na 2 O10.37 TiO MnO0.01 Total99.88 plagioclase feldspar

12-14 May, 2008SERENA, Santa Fe, NM 16 Radar Bright C region results Mineral Type Limited# end members Rutile TiO 2 Ilmenite FeTiO 3 Perovskite CaTiO 3 Troilite FeS Ortho- pyroxene 54 (e)33 (e) (h)17 (e)14 (e) (h)45 (e) (h) Clino- pyroxene 0037 (hed)20 (d)0 olivine5 Fo(91)5 Fo(66)025 Fo (88)6 Fo(79) plagioclase9 (lab)14 (lab) 00 orthoclase garnet5 (p) 2 (g) 0.7 (p) 0.9 (g) 3 (p) 0 (g) 02 (p) 0 (g) opaque0yes0

12-14 May, 2008SERENA, Santa Fe, NM 17 Color and albedo controlled by maturity and composition Map units statistically, next step is determine origin PC 2 interpreted to represent compositional variation Caloris Basin smooth plains Low albedo material Smooth plains Low albedo PC 2 MNF (minimum noise fraction, similar to PC) as R-G-B Low albedo material “streak” From Robinson et al. LPSC 2008

12-14 May, 2008SERENA, Santa Fe, NM 18 Next sequences from Donaldson Hanna et al 2008 EGU, Vienna, Austria

12-14 May, 2008SERENA, Santa Fe, NM 19 Caloris Basin Observations 8 April April

12-14 May, 2008SERENA, Santa Fe, NM 20 Best Fit Models – Caloris Basin 9 April April 2006 EM TM

12-14 May, 2008SERENA, Santa Fe, NM 21 Sanidine.3 (K,Na)Al 3 O 8 Salisbury et al. (1991) SiO Al 2 O FeO0.59 MgO0.03 CaO0.02 K2OK2O7.38 Na 2 O5.38 TiO MnO0.02 Total99.97 Orthoclase.3 KAlSi 3 O 8 Salisbury et al. (1991) SiO TiO Al 2 O MnO0.03 K2OK2O13.51 Na 2 O1.69 FeO0.02 MgO0.04 CaO0.04 Total99.34 Potassium feldspars: K-spars

12-14 May, 2008SERENA, Santa Fe, NM 22 Caloris Basin Results Merc0080Merc0070 Minerals K - Feldspar20% [sanidine]28% [sanidine] Plagioclase15% [labradorite]12% [labradorite] Orthopyroxene7% [enstatite] 5% [hypersthene] 10% [hypersthene] Clinopyroxene19% [augite]27% [augite] Olivine<3% [forsterite]<1% [forsterite] MISSINGMATERIALWHAT??

12-14 May, 2008SERENA, Santa Fe, NM 23 Dark Plains Observations 8 April April

12-14 May, 2008SERENA, Santa Fe, NM 24 Best Fit Models – Dark Plains 8 April April 2006 TM EM

12-14 May, 2008SERENA, Santa Fe, NM 25 Dark Plains Results Merc0098Merc0063 Minerals Plagioclase27% [labradorite]31% [labradorite] Orthopyroxene11% [hypersthene]6% [hypersthene] Clinopyroxene22% [augite]36% [augite] Olivine6% [forsterite]2% [forsterite] MISSINGMATERIALWHAT??

12-14 May, 2008SERENA, Santa Fe, NM 26 Rutile TiO 2

12-14 May, 2008SERENA, Santa Fe, NM 27 Perovskite CaTiO 3

12-14 May, 2008SERENA, Santa Fe, NM 28 Ilmenite FeTiO 3

12-14 May, 2008SERENA, Santa Fe, NM 29 Meteoritic troilite FeS

12-14 May, 2008SERENA, Santa Fe, NM 30 Observation Location: all E longitude Reported Result 1)Sprague et al. (1994) 338° to 348° 250° alkali basalt labradorite 2)Sprague et al. (1997) 240° to 250° 330° E labradorite, wgt. %SiO 2 ; 90% feldspar & 10% Mg- pyroxene 3)Emery et al. (1998) 295° to 350° 200° to 260° not modeled nepheline alkali syenite 4)Sprague et al. (1998) 240° to 250°90% labradorite & 10% enstatite 5)Cooper et al. (2001) 20° S to 20° N 275° ±10° 180° ±10°,170° ±10°,350° ±10° 215° ± 10° ~ 44 wgt% SiO wgt% SiO 2 ~50 and ~42 wgt. % SiO 2

12-14 May, 2008SERENA, Santa Fe, NM 31 6)Sprague et al. (2002) 20° S to 20° N 275° to 315° 252° to 292° wgt. %SiO 2 ; labradorite and clinopyroxene pyroxene (unspecified) 7)Warell et al. (2006) 50° to 75° N, 110° 50° to 75° S, 166° to 250° 50° to 75° N, 166° to 250° no FeO orthopyroxene wgt.%SiO 2 clinopyroxene wgt.%SiO 2 8)Sprague et al. (2008) EGU 0° to 30° N 100° to 140° enstatite, forsterite, orthoclase labradorite, Mg-garnet, rutile?/perovskite? 9) Donaldson Hanna et al. (2008) EGU Caloris Basin Dark Surrounding Plains K-spar, plagioclase, clinopyroxene, orthopyroxene

12-14 May, 2008SERENA, Santa Fe, NM 32 Challenges for SERENA ●Quantify neutral and ions sputtered Mg, Al, Ca, O, etc. from pyroxenes and feldspars ●Quantify Na, K, and if possible locate it ● Distinguish between solar Fe and Fe from surface materials—is it possible? ● Perhaps use knowledge of H, H 2 and He as a “boot strap” to distinguishing between solar wind and surface mineral partitioning??

12-14 May, 2008SERENA, Santa Fe, NM 33 This slide left intentionally empty end of presentation