POSTCRANIAL SKELETON - II

Slides:



Advertisements
Similar presentations
Appendicular Skeleton
Advertisements

BIOLOGY 524 POSTCRANIAL SKELETON - IV ANTEBRACHIUM AND MANUS S. S. Sumida.
The Appendicular Skeleton
The Skeletal System: Appendicular Skeleton
Appendicular Skeleton
Chapter 8 The Appendicular Skeleton
Appendicular Skeleton
Myology 2 (HS 201) Lecture 3 Myology of the Elbow.
Upper Appendicular Skeleton
Upper Appendicular Skeleton
APPENDICULAR SKELETON PECTORAL GIRDLE AND UPPER LIMB.
Chapter 8 The Skeletal System: The Appendicular Skeleton
Pectoral Girdle and Upper Limbs
BONES OF THE UPPER LIMB Dr. Khaleel Alyahya Assistant Professor
The Appendicular Skeleton
Limbs Evolution, Development And Organisation 212 – 2004 – Week 13 Avinash Bharadwaj.
Focus on the Pectoral Girdle
PowerPoint® Lecture Slides prepared by Agnes Yard and Michael Yard
BIOLOGY 524 POSTCRANIAL SKELETON - III PELVIC GIRDLE AND FEMUR S. S. Sumida.
Appendicular Skeleton
Copyright © 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings C h a p t e r 8 The Appendicular Skeleton PowerPoint® Lecture Slides.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Fundamentals of Anatomy & Physiology SIXTH EDITION Chapter 8, part 1 The Appendicular.
PowerPoint ® Lecture Slides prepared by Leslie Hendon, University of Alabama, Birmingham HUMAN ANATOMY fifth edition MARIEB | MALLATT | WILHELM 8 Copyright.
Focus on the Pectoral Girdle
Skeletal System: Shoulders and Arms
Arm/Shoulder/Forearm Muscles
The pectoral girdle consists of the ___ and ____?
Appendicular Skeleton
Appendicular Skeleton Includes all of the following: limbs or fins pectoral girdle pelvic girdle.
Heading Page # The Appendicular Skeleton – Shoulder Girdle and Upper Limbs Table of Contents.
Bones of the Appendicular Skeleton: Upper extremity Chapter 7 & 8.
The Appendicular Skeleton Resident Orientation Course 2012 By Dr. Totakhil.
Anatomy and Physiology I
Skeletal System Gross Anatomy II
Anatomy and Physiology I Bones of the Pectoral Girdle And Upper Limb Instructor: Mary Holman.
PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.
Appendicular Skeleton
NOTES part 4 : Skeletal Organization, continued (Ch 7)
PowerPoint ® Lecture Slide Presentation prepared by Dr. Kathleen A. Ireland, Biology Instructor, Seabury Hall, Maui, Hawaii The Appendicular Skeleton.
Appendicular Skeleton
THE PECTORAL GIRDLE & UPPER LIMB Chapter 7. Pectoral Girdle / Shoulder  Very light and has high degree of mobility  Considered an open joint  Consists.
The Appendicular Skeleton
The Axial Skeleton Skull Sternum Vertebrae –7 Cervical –12 thoracic –5 lumbar –5 sacral –5 fused coccygeal Ribs During this month, we will cover the bones.
The Appendicular Skeleton Salt Lake City Community College Human Anatomy Laboratory.
Anatomy-Skeletal System Appendicular Skeleton Upper Extremity.
Human anatomy. Bones of Upper Limb Shoulder Girdle Bones of Free Upper Limb.
The Appendicular Skeleton Appendicular Skeleton A. bones of the limbs 1. arms 2. legs B. girdles 1. pectoral 2. pelvic.
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The Appendicular Skeleton  The Upper Limb.
The upper limb (Osciology)
Group 4 Rachel Gagliardo, Zack Wilks,Viditya Voletti.
Radiographic Anatomy Skeletal System Bony Thorax & shoulder Girdle.
7 The Skeleton: Part C.
Appendicular Skeleton Pectoral Girdle & Upper Extremity
Anatomy and Physiology I
Bones of the shoulder girgle
The Appendicular Skeleton
The Appendicular Skeleton
Appendicular Skeleton
© 2015 Pearson Education, Inc.
BONES OF THE UPPER LIMB Dr. Khaleel Alyahya Dr. Jamila El-Medany.
8-1 The Pectoral Girdle The Pectoral Girdle Shoulder girdle
Appendicular Skeleton
Anatomy-Skeletal System
Fundamentals of Anatomy & Physiology
The Appendicular Skeleton
The Appendicular Skeleton
Title: Anat & Phys 10/4/06 Objectives: Class Topics
7 The Skeleton: Part C.
CopyrightThe McGraw-Hill Companies, Inc
Upper Extremities The Skeletal System: The Appendicular Skeleton
Presentation transcript:

POSTCRANIAL SKELETON - II BIOLOGY 524 POSTCRANIAL SKELETON - II ORIGIN OF PAIRED LIMBS, PECTORAL GIRDLE, AND HUMERUS S. S. Sumida

Major themes we examine in this lecture include: The origin of paired limbs in general. Evolution of the pectoral girdle: detachment of girdle from skull Evolution of the pectoral girdle: reduction in emphasis on dermal elements. Evolution of the pectoral girdle: increase in emphasis on endochondral elements Humerus: evolution of orientation and major processes. Change in orientation and posture of gleno-humeral joint  

Embryology: All elements of the pectoral girdle, as well as the humerus are all derived from mesoderm. The pectoral girdle is a composite structure made of multiple elements, some of which form intramembranously, and some of which form endochondrally. The humerus forms endochondrally as well.

FIN FOLD THEORY OF THE ORIGIN OF PAIRED FINS   In the FIN FOLD THEORY, it is hypothesized that primitive fishes (probably gnathostomes) may have had a continuous , laterally directed stabilizing structure one each side of the body. It is further hypothesized that the pectoral (fore) and pelvic (hind) fins were pieced out of these elongate, trans-segmental structures.

This would then suggest that the earliest fins were BROAD-BASED FINS with multiple basals.   This theory is supported by the fact that there are primitive fishes known as Arthrodires that have a series of spines in exactly that lateral position, and some feel they may have helped to support a lateral fin fold. For example, the arthrodire Climatus:

Additionally, some extinct Paleozoic sharks (Cladoselache and its relatives) have very broadly based fins, so we know that the proposed anatomical model is a viable one. Eventually, the articulations of both the pectoral and pelvic limbs become more restricted, with a single element (humerus or femur) articulating with either girdle . This is known as a MONOBASAL ARTICULATION.  

FISHES: PECTORAL GIRDLE AND FIN   Four main features must be noted about the pectoral girdles of most fishes: They are physically attached, articulated with the back of the skull; and The are composed primarily of intramembranous (dermal) elements. These elements include postopercular bones, the SUPRACLEITHRUM, CLEITHRUM, and CLAVICLE. The only endochondral element is the SCAPULOCORACOID. However, it is worth noting that the scapulocoracoid provides the articulation for the humerus.

As basal tetrapods diverged from crossopterygian fishes, two significant changes took place: The pectoral girdle detached from the back end of the skull. Although dermal elements remain prominent, endochondral elements become more and more important and greater in volume.

Ventastega is considered one of the most primitive known of all tetrapods. Note the larger scapulcoracoid, and the presence of a new dermal element: the INTERCLAVICLE.

The somewhat more derived Ichthyostega:

TRENDS IN THE TETRAPOD PECTORAL GIRDLE   Through the course of tetrapod evolution through to basal amniotes: the anocleithrum is lost the supracleithrum is reduced drastically or lost the cleithrum is reduced significantly the clavicle remains as the most robust dermal element left the interclavicle remains as well. The scapula and coracoid are recognizable as distinct elements Perhaps the most significant anatomical distinction is the that glenoid fossa becomes very complicated in its shape, as it matches the complexly shaped humeral head and provides a track in which that element is guided.

The basal reptile Labidosaurus

ADDITIONAL REPTILIAN PECTORAL DIVERSITY   In other reptilian groups, notice the variation in the scapula and coracoid (Ac). Note particularly the extreme reduction in elements (and increase in axial sternum) in birds.

THE PECTORAL GIRDLE: THE ROAD TO MAMMALS   The change from a basal amniote condition as seen in pelycosaurs to that of mammals is marked by the following: Continued reduction and eventual loss of the cleithrum. Reduction of the clavicle, and loss in cursorial mammals. Gradual reduction in the contribution of the coracoid until is a process fused to the scapula.

HUMERUS   A distinct humerus become apparent in the crossopterygian sister-taxa to tetrapods. In advanced crossopterygians, the first element of the monobasal articulation can be identified as a distinct humerus.

As the humerus becomes distinct in Devonian crossopterygian and primitive tetrapods, it becomes approximately “L-shaped”. This very large process is the ENTEPICONDYLE (labeled “4” above), and is for attachment of progressively stronger flexor muscles. It has been suggested that when the arm reaches forward, very strong flexors of the elbow wold be required to pull the animal forward past the planted manus.

THE TETRAPOD HUMERUS   The humerus in basal tetrapods is extremely complex in construction, initially bearing little resemblance to that of more familiar recent mammals and birds. It has been various described at a “tetrahedron”, a pair of tetrahedrons mounted at an angle ton one another, and others. Following are illustrations and photographs of the diadectomorph Diadectes, and the basal reptile Labidosaurus respectively.

There are numerous things to notice about the amphiban / amniote humerus: Proximally the deltoid, supinator, and pectoral processes are very powerfully developed. There is little or no distinct shaft in more basal taxa. As in basal tetrapods, the entepicondyle is very highly developed, highlighting the continued importance of the flexor musculature of the forearm. Distally, the ECTEPICONDYLE become well developed as well, for attachment of the extensor musculature of the forearm. Also distally, the first structures on the road to mammals are a clearly developed spherical capitulum for reception of the radius, and trochlear notch for reception of the ulna.

A survey of primitive amphibian and amniote humeri

THE TETRAPOD GLENOHUMERAL JOINT   With the unusual shapes of both the glenoid fossa and the proximal articualar head of the humerus in mind, their interaction must be addressed. The basal tetrapod glenoid is not a simple concave socket. It is generally characterized as a “SCREW-SHAPED STRAP”. On the next page, note that the anterior part of the glenoid has a shelf above so that the articular surface faces ventrally; whereas toward the posterior part of the glenoid the articular surface faces up. THIS FORCES THE HEAD OF THE HUMERAL TO TRACK THROUGH THIS SET OF SURFACE, ROTATING FROM FACING DOWN TO UP, EFFECTIVELY CAUSING THE HUMERUS TO ROTATE ON ITS LONG AIXS AS IT RETRACTS.

THE TETRAPOD GLENOHUMERAL JOINT   With the unusual shapes of both the glenoid fossa and the proximal articualar head of the humerus in mind, their interaction must be addressed. The basal tetrapod glenoid is not a simple concave socket. It is generally characterized as a “SCREW-SHAPED STRAP”. On the next page, note that the anterior part of the glenoid has a shelf above so that the articular surface faces ventrally; whereas toward the posterior part of the glenoid the articular surface faces up. THIS FORCES THE HEAD OF THE HUMERAL TO TRACK THROUGH THIS SET OF SURFACE, ROTATING FROM FACING DOWN TO UP, EFFECTIVELY CAUSING THE HUMERUS TO ROTATE ON ITS LONG AIXS AS IT RETRACTS.

MORE DERIVED HUMERI In mammals:   In mammals: A distinct shaft becomes much more apparent. The proximal articular surface becomes the partially spherical humaral head, adopting a much simpler shape and greater range of motion. The deltoid and pectoral processes unite to become the delto-pectoral crest. The degree of development of various processes is dependent on the lifestyle of the particular mammal. Humeral morphology in mammals is much more variable than in birds, as that of birds is significantly constrained by the requirements for flight.