Decisions with conflict

Slides:



Advertisements
Similar presentations
Concepts of Game Theory I
Advertisements

M9302 Mathematical Models in Economics Instructor: Georgi Burlakov 3.1.Dynamic Games of Complete but Imperfect Information Lecture
Basics on Game Theory Class 2 Microeconomics. Introduction Why, What, What for Why Any human activity has some competition Human activities involve actors,
ECON 100 Tutorial: Week 9 office: LUMS C85.
This Segment: Computational game theory Lecture 1: Game representations, solution concepts and complexity Tuomas Sandholm Computer Science Department Carnegie.
3. Basic Topics in Game Theory. Strategic Behavior in Business and Econ Outline 3.1 What is a Game ? The elements of a Game The Rules of the.
© 2009 Institute of Information Management National Chiao Tung University Game theory The study of multiperson decisions Four types of games Static games.
Non-Cooperative Game Theory To define a game, you need to know three things: –The set of players –The strategy sets of the players (i.e., the actions they.
Chapter 6 Game Theory © 2006 Thomson Learning/South-Western.
1 Quantum Games Quantum Strategies in Classical Games Presented by Yaniv Carmeli.
Chapter 6 Game Theory © 2006 Thomson Learning/South-Western.
EC941 - Game Theory Lecture 7 Prof. Francesco Squintani
Short introduction to game theory 1. 2  Decision Theory = Probability theory + Utility Theory (deals with chance) (deals with outcomes)  Fundamental.
M9302 Mathematical Models in Economics Instructor: Georgi Burlakov 3.1.Dynamic Games of Complete but Imperfect Information Lecture
Chapter 11 Game Theory and the Tools of Strategic Business Analysis.
Games What is ‘Game Theory’? There are several tools and techniques used by applied modelers to generate testable hypotheses Modeling techniques widely.
Economics 202: Intermediate Microeconomic Theory 1.HW #6 on website. Due Thursday. 2.No new reading for Thursday, should be done with Ch 8, up to page.
An Introduction to Game Theory Part I: Strategic Games
2008/02/06Lecture 21 ECO290E: Game Theory Lecture 2 Static Games and Nash Equilibrium.
Chapter 6 © 2006 Thomson Learning/South-Western Game Theory.
1 Business System Analysis & Decision Making - Lecture 5 Zhangxi Lin ISQS 5340 July 2006.
Ecs289m Spring, 2008 Non-cooperative Games S. Felix Wu Computer Science Department University of California, Davis
GAME THEORY By Ben Cutting & Rohit Venkat. Game Theory: General Definition  Mathematical decision making tool  Used to analyze a competitive situation.
Eponine Lupo.  Game Theory is a mathematical theory that deals with models of conflict and cooperation.  It is a precise and logical description of.
Slide 1 of 13 So... What’s Game Theory? Game theory refers to a branch of applied math that deals with the strategic interactions between various ‘agents’,
A camper awakens to the growl of a hungry bear and sees his friend putting on a pair of running shoes, “You can’t outrun a bear,” scoffs the camper. His.
Chapter 12 Choices Involving Strategy McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All Rights Reserved.
Basics on Game Theory For Industrial Economics (According to Shy’s Plan)
© 2008 Pearson Addison Wesley. All rights reserved Chapter Fourteen Game Theory.
Game theory The study of multiperson decisions Four types of games
1 Introduction APEC 8205: Applied Game Theory. 2 Objectives Distinguishing Characteristics of a Game Common Elements of a Game Distinction Between Cooperative.
An introduction to game theory Today: The fundamentals of game theory, including Nash equilibrium.
Introduction to Game Theory and Behavior Networked Life CIS 112 Spring 2009 Prof. Michael Kearns.
Social Choice Session 7 Carmen Pasca and John Hey.
Chapter 12 Choices Involving Strategy Copyright © 2014 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written.
A Game-Theoretic Approach to Strategic Behavior. Chapter Outline ©2015 McGraw-Hill Education. All Rights Reserved. 2 The Prisoner’s Dilemma: An Introduction.
Dynamic Games of complete information: Backward Induction and Subgame perfection - Repeated Games -
EC941 - Game Theory Prof. Francesco Squintani Lecture 5 1.
Dynamic Games & The Extensive Form
THE “CLASSIC” 2 x 2 SIMULTANEOUS CHOICE GAMES Topic #4.
Chapter 12 - Imperfect Competition: A Game-Theoretic Approach Copyright © 2015 The McGraw-Hill Companies, Inc. All rights reserved.
Chapters 29 and 30 Game Theory and Applications. Game Theory 0 Game theory applied to economics by John Von Neuman and Oskar Morgenstern 0 Game theory.
Chapter 5 Game Theory and the Tools of Strategic Business Analysis.
Oligopoly. Oligopoly is a market in which a small number of firms compete. In oligopoly, the quantity sold by one firm depends on the firm’s own price.
The Science of Networks 6.1 Today’s topics Game Theory Normal-form games Dominating strategies Nash equilibria Acknowledgements Vincent Conitzer, Michael.
Extensive Games with Imperfect Information
Lecture 5 Introduction to Game theory. What is game theory? Game theory studies situations where players have strategic interactions; the payoff that.
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Strategic Behavior in Business and Econ Static Games of complete information: Dominant Strategies and Nash Equilibrium in pure and mixed strategies.
How to Analyse Social Network? : Part 2 Game Theory Thank you for all referred contexts and figures.
Chapters 29 and 30 Game Theory and Applications. Game Theory 0 Game theory applied to economics by John Von Neuman and Oskar Morgenstern 0 Game theory.
5.1.Static Games of Incomplete Information
Topics to be Discussed Gaming and Strategic Decisions
Extensive Form (Dynamic) Games With Perfect Information (Theory)
Lec 23 Chapter 28 Game Theory.
Oligopoly CHAPTER 13B. Oligopoly IRL In some markets there are only two firms. Computer chips are an example. The chips that drive most PCs are made by.
Econ 805 Advanced Micro Theory 1 Dan Quint Fall 2009 Lecture 1 A Quick Review of Game Theory and, in particular, Bayesian Games.
By: Donté Howell Game Theory in Sports. What is Game Theory? It is a tool used to analyze strategic behavior and trying to maximize his/her payoff of.
Advanced Subjects in GT Outline of the tutorials Static Games of Complete Information Introduction to games Normal-form (strategic-form) representation.
Chapter 12 Game Theory Presented by Nahakpam PhD Student 1Game Theory.
Game Theory By Ben Cutting & Rohit Venkat.
Game theory Chapter 28 and 29
Game theory basics A Game describes situations of strategic interaction, where the payoff for one agent depends on its own actions as well as on the actions.
Chapter 12 - Imperfect Competition: A Game-Theoretic Approach
Game theory Chapter 28 and 29
Game Theory Chapter 12.
Learning 6.2 Game Theory.
LECTURE 3 DYNAMIC GAMES OF COMPLETE INFORMATION
Molly W. Dahl Georgetown University Econ 101 – Spring 2009
M9302 Mathematical Models in Economics
Presentation transcript:

Decisions with conflict Game Theory I Decisions with conflict PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 What is game theory? Mathematical models of conflicts of interest involving: Outcomes (and utility preferences thereon) Actions (single or multiple) Observations of state of game (complete, partial, or probabilistic-beliefs) Model of other actors (especially important if other players actions are not observable at the time of decision. Players are modeled as attempting to maximize their utility of outcomes by selecting an action strategy Strategy: an action sequence plan contingent on observations made at each step of the game Mixed strategy: a probabilistic mixture of determinate strategies. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

What can Game Theory model (potentially)? Economic behavior Contracts, markets, bargaining, arbitration… Politics Voter behavior, Coalition formation, War initiation,… Sociology Group decision making Social values: fairness, altruism, reciprocity,truthfulness Social strategies: Competition, Cooperation Trust Mate selection Social dominance (Battle of the sexes with unequal payoffs) PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Game Formulations-Game rules Game rules should specify Game tree-- all possible states and moves articulated Partition of tree by players Probability distributions over all chance moves Characterization of each player’s Information set Assignment of a set of outcomes to each terminal node in the tree. Example: GOPS or Goofspiel Two players. deck of cards is divided into suits, Player A gets Hearts, B gets diamonds. Spades are shuffled and uncovered one by one. Goal-- Get max value in spades. On each play, A and B vie for the uncovered spade by putting down a card from their hand. Max value of the card wins the spade. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Goofspiel with hidden 1st player card A’s move ? ? ? e.g. Actual play What should B’s move Be? PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Game Tree for 3-card Goofspiel, A’s move hidden W D W L D W W W W W Player A’s outcome 1 3 1 3 1 2 1 2 2 3 2 3 2 3 2 3 2 3 3 spades is revealed 1 2 3 B’s info, move 1 2 3 1 1 2 3 Player A’s information Set, move 1 231 213 312 S= Random Shuffle & Deal of Spades=> 6 possible initial game states Viewing initial 2 reduces game state to 2 possibilities 132 S 123 321 Actual Spade sequence After shuffle PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 Games in Normal Form Enumerate all possible strategies Each strategy is a planned sequence moves, contingent on each information state. Example: A strategy: play Spade +1 (with 1 played for 3) B strategy: match 1st spade, then play larger 2 remaining cards if A plays 3 first. Otherwise, play the smaller. Deck Player A Player B Cards Won by A Outcome for A 123 231 1,2 Draw 132 213 1,draw on 2 Lose 321 2, draw on 3 Win 312 2,1 3122 2, draw on 1 PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Definition: normal-form or strategic-form representation The normal-form (or strategic-form) representation of a game G specifies: A finite set of players {1, 2, ..., n}, players’ strategy spaces S1 S2 ... Sn and their payoff functions u1 u2 ... un where ui : S1 × S2 × ...× Sn→R. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Games in Normal Form (2 player) Make a table with all pairs of event contingent strategies, and place in the cell the values of the outcomes for both players B’s A’s S1 ….. SN U1(o11),U2(o11) U1(oN1),U2(oN1) : SM U1(o1M),U2(o1M) U1(oNM),U2(oNM) PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Normal-form representation: 2-player game Bi-matrix representation 2 players: Player 1 and Player 2 Each player has a finite number of strategies Example: S1={s11, s12, s13} S2={s21, s22} ( Outcomes of pairs of strategies assumed known) Player 2 s21 s22 Player 1 s11 u1(s11,s21), u2(s11,s21) u1(s11,s22), u2(s11,s22) s12 u1(s12,s21), u2(s12,s21) u1(s12,s22), u2(s12,s22) s13 u1(s13,s21), u2(s13,s21) u1(s13,s22), u2(s13,s22) PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Classic Example: Prisoners’ Dilemma Two suspects held in separate cells are charged with a major crime. However, there is not enough evidence. Both suspects are told the following policy: If neither confesses then both will be convicted of a minor offense and sentenced to one month in jail. If both confess then both will be sentenced to jail for six months. If one confesses but the other does not, then the confessor will be released but the other will be sentenced to jail for nine months. Prisoner 2 Mum Confess Mum -1 , -1 -9 , 0 0 , -9 -6 , -6 Prisoner 1 Confess PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Example: The battle of the sexes At the separate workplaces, Chris and Pat must choose to attend either an opera or a prize fight in the evening. Both Chris and Pat know the following: Both would like to spend the evening together. But Chris prefers the opera. Pat prefers the prize fight. Chris Pat Prize Fight Opera 2 , 1 0 , 0 1 , 2 PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Example: Matching pennies Each of the two players has a penny. Two players must simultaneously choose whether to show the Head or the Tail. Both players know the following rules: If two pennies match (both heads or both tails) then player 2 wins player 1’s penny. Otherwise, player 1 wins player 2’s penny. Player 1 Player 2 Tail Head -1 , 1 1 , -1 PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Static (or simultaneous-move) games of complete information A static (or simultaneous-move) game consists of: A set of players (at least two players) For each player, a set of strategies/actions Payoffs received by each player for the combinations of the strategies, or for each player, preferences over the combinations of the strategies {Player 1, Player 2, ... Player n} S1 S2 ... Sn ui(s1, s2, ...sn), for all s1S1, s2S2, ... snSn. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Static (or simultaneous-move) games of complete information Each player chooses his/her strategy without knowledge of others’ choices. Complete information Each player’s strategies and payoff function are common knowledge among all the players. Assumptions on the players Rationality Players aim to maximize their payoffs Players are perfect calculators Each player knows that other players are rational PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Static (or simultaneous-move) games of complete information The players cooperate? No. Only noncooperative games The timing Each player i chooses his/her strategy si without knowledge of others’ choices. Then each player i receives his/her payoff ui(s1, s2, ..., sn). The game ends. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Classic example: Prisoners’ Dilemma: normal-form representation Set of players: {Prisoner 1, Prisoner 2} Sets of strategies: S1 = S2 = {Mum, Confess} Payoff functions: u1(M, M)=-1, u1(M, C)=-9, u1(C, M)=0, u1(C, C)=-6; u2(M, M)=-1, u2(M, C)=0, u2(C, M)=-9, u2(C, C)=-6 Players Prisoner 1 Prisoner 2 Strategies Confess Mum -1 , -1 -9 , 0 0 , -9 -6 , -6 Payoffs PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Example: The battle of the sexes Chris Pat Prize Fight Opera 2 , 1 0 , 0 1 , 2 Normal (or strategic) form representation: Set of players: { Chris, Pat } (={Player 1, Player 2}) Sets of strategies: S1 = S2 = { Opera, Prize Fight} Payoff functions: u1(O, O)=2, u1(O, F)=0, u1(F, O)=0, u1(F, O)=1; u2(O, O)=1, u2(O, F)=0, u2(F, O)=0, u2(F, F)=2 PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Example: Matching pennies Player 1 Player 2 Tail Head -1 , 1 1 , -1 Normal (or strategic) form representation: Set of players: {Player 1, Player 2} Sets of strategies: S1 = S2 = { Head, Tail } Payoff functions: u1(H, H)=-1, u1(H, T)=1, u1(T, H)=1, u1(H, T)=-1; u2(H, H)=1, u2(H, T)=-1, u2(T, H)=-1, u2(T, T)=1 PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 Games for eliciting social preferences PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 More Games PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Core Concepts we Need from Game Theory Strategy Mixed strategy Information set Dominance Nash Equilibrium Subgame Perfection Types of Players (Bayesian games) PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Definition: strictly dominated strategy si” is strictly better than si’ regardless of other players’ choices Prisoner 1 Prisoner 2 Confess Mum -1 , -1 -9 , 0 0 , -9 -6 , -6 PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Definition: weakly dominated strategy si” is at least as good as si’ regardless of other players’ choices Player 1 Player 2 R U B L 1 , 1 2 , 0 0 , 2 2 , 2 PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Strictly and weakly dominated strategy A rational player never chooses a strictly dominated strategy (that it perceives). Hence, any strictly dominated strategy can be eliminated. A rational player may choose a weakly dominated strategy. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 Several of these slides from Andrew Moore’s tutorials http://www.cs.cmu.edu/~awm/tutorials PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 Several of these slides from Andrew Moore’s tutorials http://www.cs.cmu.edu/~awm/tutorials PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 Patricia Back to the Battle Prize Fight Opera 2 , 1 -1 , -1 1 , 2 Two Nash Equilibria Chris PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 What is Fair? 1/4,1/4 PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Bargaining- Agreeing to Eliminate strategy pairs Fair-Flip a coin and Agree to let coin-flip be binding. Requires a coordinated decision- Chris and Pat have to talk to achieve this. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Less Tragic with Repeated Plays? Does the Tragedy of the Commons matter to us when we’re analyzing human behavior? Maybe repeated play means we can learn to cooperate?? PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Example: mutually assured destruction Two superpowers, 1 and 2, have engaged in a provocative incident. The timing is as follows. The game starts with superpower 1’s choice either ignore the incident ( I ), resulting in the payoffs (0, 0), or to escalate the situation ( E ). Following escalation by superpower 1, superpower 2 can back down ( B ), causing it to lose face and result in the payoffs (1, -1), or it can choose to proceed to an atomic confrontation situation ( A ). Upon this choice, the two superpowers play the following simultaneous move game. They can either retreat ( R ) or choose to doomsday ( D ) in which the world is destroyed. If both choose to retreat then they suffer a small loss and payoffs are (-0.5, -0.5). If either chooses doomsday then the world is destroyed and payoffs are (-K, -K), where K is very large number. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Example: mutually assured destruction 1 I E 0, 0 2 B A 1, -1 R D -0.5, -0.5 -K, -K PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005 Subgame A subgame of a dynamic game tree begins at a singleton information set (an information set contains a single node), and includes all the nodes and edges following the singleton information set, and does not cut any information set; that is, if a node of an information set belongs to this subgame then all the nodes of the information set also belong to the subgame. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Subgame: illustration 1 I E 0, 0 2 B A 1, -1 R D -0.5, -0.5 -K, -K a subgame a subgame Not a subgame PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Subgame-perfect Nash equilibrium A Nash equilibrium of a dynamic game is subgame-perfect if the strategies of the Nash equilibrium constitute or induce a Nash equilibrium in every subgame of the game. Subgame-perfect Nash equilibrium is a Nash equilibrium. PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Find subgame perfect Nash equilibria: backward induction 1 I E 0, 0 2 B A 1, -1 R D -0.5, -0.5 -K, -K a subgame Starting with those smallest subgames Then move backward until the root is reached One subgame-perfect Nash equilibrium ( IR, AR ) PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

Find subgame perfect Nash equilibria: backward induction 1 I E 0, 0 2 B A 1, -1 R D -0.5, -0.5 -K, -K a subgame Starting with those smallest subgames Then move backward until the root is reached Another subgame-perfect Nash equilibrium ( ED, BD ) PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005

PSY 5018H: Math Models Hum Behavior, Prof. Paul Schrater, Spring 2005