Electrical Data Transmission on Flex Cables at 320 Mbps Peter Manning, Vitaliy Fadeyev, Jason Nielsen Santa Cruz Institute for Particle Physics University.

Slides:



Advertisements
Similar presentations
Hybrid pixel: pilot and bus K. Tanida (RIKEN) 06/09/03 Si upgrade workshop Outline Overview on ALICE pilot and bus Requirements Pilot options Bus options.
Advertisements

10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1.
01/11/2002SNS Software Final Design Review1 V123S Event Link Encoder, Transmission System and PLL Receiver Thomas M. Kerner (BNL) SNS Global Controls.
Alice EMCAL meeting, July EMCAL jet trigger status Olivier BOURRION LPSC, Grenoble.
L. Greiner 1HFT PXL LBNL F2F – March 14, 2012 STAR HFT The STAR-PXL sensor and electronics Progress report for F2F.
IEEE10/NSS R. Kass N A. Adair, W. Fernando, K.K. Gan, H.P. Kagan, R.D. Kass, H. Merritt, J. Moore, A. Nagarkar, S. Smith, M. Strang The Ohio State.
J.Ye / SMU May 18, 2015 GOL + SoS R & D Work at SMU 1.The Test of the GOL chip. 2.First test on the SoS driver chip and the submission of a dedicated test.
1 A 16:1 serializer for data transmission at 5 Gbps Datao Gong 1, Suen Hou 2, Zhihua Liang 1, Chonghan Liu 1, Tiankuan Liu 1, Da-Shun Su 2, Ping-Kun Teng.
Uli Schäfer JEM Status and plans Firmware Hardware status JEM1 Plans.
GEM Design Plans Jason Gilmore TAMU Workshop 1 Oct
Status of opto R&D at SMU Jingbo Ye Dept. of Physics SMU For the opto WG workshop at CERN, March 8 th, 2011.
SRS-DTC Links WG5 RD51 Miniweek Alfonso Tarazona Martínez, CERN PH-AID-DT.
U niversity of S cience and T echnology of C hina Design for Distributed Scheme of WCDA Readout Electronics CAO Zhe University of Science and Technology.
A Serializer ASIC for High Speed Data Transmission in Cryogenic and HiRel Environment Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group.
1 A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout 1.Overview. 2.Test results of LOCs1, the 5 Gbps 16:1 serializer. 3.Test results.
Larg. Week, April 2002, Electronics Meeting1 Progress Report On Electronics Activities in Paris Bertrand Laforge LPNHE Paris CNRS/IN2P3 – Universités Paris.
Elastic Buffer: data transfer in 2 clock domains Albert Chun (M.A.Sc. Candidate) Ottawa-Carleton Institute for Electrical & Computer Engineering (OCIECE)
IEEE08/NSS R. Kass N Radiation-Hard/High-Speed Data Transmission Using Optical Links W. Fernando, K.K. Gan, A. Law, H.P. Kagan, R.D. Kass, J. Moore,
Leo Greiner IPHC testing Sensor and infrastructure testing at LBL. Capabilities and Plan.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR Hardware Prototyping Status.
PMF: front end board for the ATLAS Luminometer ALFA TWEPP 2008 – 19 th September 2008 Parallel Session B6 – Programmable logic, boards, crates and systems.
SMU Report: R&D work for LAr upgrade May 4, UCSC Optical link for LAr upgrade readout Objectives: 1.Evaluate the 0.25  m Silicon on Sapphire.
U N C L A S S I F I E D FVTX Detector Readout Concept S. Butsyk For LANL P-25 group.
Leo Greiner IPHC meeting HFT PIXEL DAQ Prototype Testing.
June 29th 2005Ph. BUSSON LLR Ecole polytechnique, Palaiseau1 Plans for a new TCC for the endcaps Characteristics: reminder Preliminary list of tasks and.
A.A. Grillo SCIPP-UCSC ATLAS 10-Nov Thoughts on Data Transmission US-ATLAS Upgrade R&D Meeting UCSC 10-Nov-2005 A. A. Grillo SCIPP – UCSC.
1 Demo Link and the LOC Status Report 1.Demo Link status 2.LOC2 status 3.Irradiation tests on optical fiber 4.Summary Vitaliy for the SMU team.
Leo Greiner IPHC DAQ Readout for the PIXEL detector for the Heavy Flavor Tracker upgrade at STAR.
FF-LYNX (*): Fast and Flexible protocols and interfaces for data transmission and distribution of clock, trigger and control signals (*) project funded.
23 February 2004 Christos Zamantzas 1 LHC Beam Loss Monitor Design Considerations: Digital Parts at the Tunnel Internal Review.
HBD FEM Overall block diagram Individual building blocks Outlook ¼ detector build.
Optical Links CERN Versatile Link Project VL – Oxford involvement CERN VL+ for ATLAS/CMS phase II upgrade – Introduction and aims – Oxford workpackage:
CMX status and plans Yuri Ermoline for the MSU group Level-1 Calorimeter Trigger Joint Meeting CERN, October 2012,
Upgrade of the CSC Endcap Muon Port Card Mikhail Matveev Rice University 1 November 2011.
Status and planning of the CMX Wojtek Fedorko for the MSU group TDAQ Week, CERN April , 2012.
C. Issever, Oxford 1 Status of Radiation Proposal Focus on: Amendment to Proposal Radiation Protocols.
Leo Greiner PIXEL Hardware meeting HFT PIXEL detector LVDS Data Path Testing.
1 LAr high speed optical link studies: the status report on the LOC ASIC 1.The LOC ASIC, an introduction 2.The SOS technology 3.LOC1 test results 4.LOC2.
Optical Readout and Control Interface for the BTeV Pixel Vertex Detector Optical interface for the PCI board –1.06 Gbps optical link receiver –Protocol.
Some thoughts on the New Small Wheel Trigger Issues V. Polychronakos, BNL 10 May,
J.Ye / SMU Sept.4, 2007 Joint ATLAS CMS Opto-electronics working group, subgroup C 1 Report from sub-group C, Optical Link Evaluation Criteria and Test.
SP04 Production Lev Uvarov RICE Muon Trigger Meeting August 27, 2004.
Sept. 7, 2004Silicon VTX Workshop - Brookhaven National Laboratory, Long Island, New York Prototype Design of the Front End Module (FEM) for the Silicon.
P. Aspell CERN April 2011 CMS MPGD Upgrade …. Electronics 2 1.
1 Status Report on the LOC ASIC 1.The LOC ASIC proposal 2.The SOS technology 3.LOC1 test results 4.LOC2 design status 5.Summary Datao Gong, Andy Liu, Annie.
SMU Report: R&D work for ID upgrade May 3, UCSC R&D work on gigabit optical link for ATLAS ID readout upgrade at SMU Objectives: 1.Evaluate.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
1 The Link-On-Chip (LOC) Project at SMU 1.Overview. 2.Status 3.Current work on LOCs6. 4.Plan and summary Jingbo Ye Department of Physics SMU Dallas, Texas.
1 Preparation to test the Versatile Link in a point to point configuration 1.Versatile Link WP 1.1: test the Versatile Link in a point to point (p2p) configuration.
Upgrade of the CSC Endcap Muon Port Card with Spartan-6 FPGA Mikhail Matveev Rice University 30 April 2012.
Peter LICHARD CERN (NA62)1 NA62 Straw tracker electronics Study of different readout schemes Readout electronics frontend backend Plans.
16 February 2011Ian Brawn1 The High Speed Demonstrator and Slice Demonstrator Programme The Proposed High-Speed Demonstrator –Overview –Design Methodology.
1 Optical fiber irradiation tests 1.Results from ATLAS LAr 2.Narrow down to Germanium doped GRIN fiber 3.Preliminary tests 4.Tests in the plan Jingbo Ye.
SLHC ID electronics Novermber '10 Tony Weidberg1 High Speed Cable Testing Twinax cable FPGA based test system –BERT –Eye diagrams Upgrade to system Spice.
High Speed Electrical Data Transmission on Long Flex Cables Matthew Norgren, Peter Manning, Vitaliy Fadeyev, Jason Nielsen, Forest Martinez-McKinney Santa.
High speed signal transmission Jan Buytaert. Topics Electrical standards: CML,LVDS, SLVS Equalization. Testbench of a readout slice. Vacuum feed-throughs.
J. Ye SMU Joint ATLAS-CMS Opto-electronics working group, April 10-11, 2008 CERN 1 Test Results on LOC1 and Design considerations for LOC2 LOC1 test results:
March 14, 2016 Report on SMU R&D work1 Link-On-Chip (LOC) 1st Prototype  Status:  Prototype chip with the clock unit (PLL), serializer, laser driver,
5 Gbps J. SMU 1 A Serializer for LAr Front-end electronics upgrade 1.Requirements and design philosophy. 2.Key features of the serializer.
Rutherford Appleton Laboratory September 1999Fifth Workshop on Electronics for LHC Presented by S. Quinton.
1 Status report on the LAr optical link 1.Introduction and a short review. 2.The ASIC development. 3.Optical interface. 4.Conclusions and thoughts Jingbo.
August 24, 2011IDAP Kick-off meeting - TileCal ATLAS TileCal Upgrade LHC and ATLAS current status LHC designed for cm -2 s 7+7 TeV Limited to.
1 Roger Rusack The University of Minnesota. Projects  Past Projects  11,000 channels of 0.8 Gbs for the CMS crystal calorimeter readout.  1,500 channels.
Off-Detector Processing for Phase II Track Trigger Ulrich Heintz (Brown University) for U.H., M. Narain (Brown U) M. Johnson, R. Lipton (Fermilab) E. Hazen,
End OF Column Circuits – Design Review
CALICE DAQ Developments
The Silicon-on-Sapphire Technology:
Overview of the project
Old ROD + new BOC design plans
TTC setup at MSU 6U VME-64 TTC Crate: TTC clock signal is
Presentation transcript:

Electrical Data Transmission on Flex Cables at 320 Mbps Peter Manning, Vitaliy Fadeyev, Jason Nielsen Santa Cruz Institute for Particle Physics University of California, Santa Cruz ATLAS SCT Upgrade meeting at UCSC 12 August 2008 Options and Issues with Optical Transmission Jingbo Ye et al SMU

2008/08/12V. Fadeyev (UCSC)2 Outline Investigating LVDS transmission on flex cable stripline at speeds up to 320 Mbps over cm Results at waveform (eye diagram) level currently. Investigation of different loads and trace geometry. Making modeling more realistic: BERT and latching circuits Optical transmission work: –Demo link status –LOC2 status –Fiber irradiation tests

2008/08/12V. Fadeyev (UCSC)3 Testing Hardware Setup Xilinx ML-310 (Virtex 2 Pro) National DS25BR100EVK

2008/08/12V. Fadeyev (UCSC)4 Prototype Stave Cable Bond to straight traces on cable edge Shields top and bottom bonded together Thanks to Carl, an early version of SCT stave. –50 cm long stripline –Taps every 10 cm

2008/08/12V. Fadeyev (UCSC)5 Assumptions Recall from architecture: we are planning for point- to-point transmission for data, and multiple “tap points” for the clock distribution. Investigation with DPO scope (500 MHz)

2008/08/12V. Fadeyev (UCSC)6 Investigated Trace geometry effects 100 mum wide, 100 mum sep, straight 100 mum wide, 1000 mum sep, straight 100 mum wide, 100 mum sep, zigzag ~300 mum wide, 100 mum sep, zigzag Pt-to-pt PRBS OK X Pt-to-pt CLK OK Pt-to-pt PRBS; 4 taps of 2 pF XX Pt-to-pt CLK; 4 taps of 2 pF OK Pt-to-pt CLK; 4 taps of 10 pF X Pt-to-pt PRBS; 4 taps of repeater (0.6 pF) OK Pt-to-pt CLK; 4 taps of repeater (0.6 pF) OK Pt-to-pt PRBS; 4 pF at source OK The studied cable has a several types of striplines.

2008/08/12V. Fadeyev (UCSC)7 Eye Diagram Examples Clock at the receiver with 4 x 2pF loads along the stripline Eye diagram at the receiver with 4 x SN65LVDS100 receiver loads along the stripline

2008/08/12V. Fadeyev (UCSC)8 Cross-Talk Measure cross-talk signal on adjacent terminated trace (orange) separated by 100 microns (same as stripline width) Drive differential pair with 100 MHz clock (blue) Note different scales: cross-talk amplitude is less than 5%. At source endAt termination end

2008/08/12V. Fadeyev (UCSC)9 BERT Development Need an error rate tester for quantitative assessment of transmission quality. Have a basic structure for bit-level investigation; studying phase control …stream at 280 MHz Data in Error out Inv. Data in (=>360 deg. delay) Error out 10101…stream at 320 MHz

2008/08/12V. Fadeyev (UCSC)10 Hybrid “Models” Looked at a couple of circuits that could latch the data wrt input clock, thereby modeling the data acceptance by module (and stave?) controllers. OnSemi’s DFF MC10EP52OnSemi’s DFF NBSG53A

2008/08/12V. Fadeyev (UCSC)11 Conclusions Indications for satisfactory performance for several variations of stripline geometry. For multi-tap scenario, the performance depends on “tap” loads. Cross-talk between nearby traces is small. Making progress with BERT and hybrid “models”

2008/08/12V. Fadeyev (UCSC)12 Next Steps and Time Table Finish BERT firmware development, measure error rates ~3 months Follow up with software modeling ~2 months Instrument Carl’s long ladder and measure the performance (place multiple hybrids or “models” with realistic multi-tap clock distribution etc and measure individual line error rates) ~3 months To complete these near-term tasks we’d need 6-9 months, depending on degree of parallelism practically achievable. Custom-made cables with proper routing? Serial powering and effect of balancing the protocols?

Demo Link and the LOC Status Report (This is a shortened version of the report. The full version is available on the meeting ’ s web site.) 1.Demo Link status 2.LOC2 status 3.Irradiation tests on optical fiber 4.Summary Vitaliy for the SMU team

Reminder: GOL, LOC, GBT … H1 H2H3H4…. SC Serialized data It is envisoned that at the end of the stave there is a stave controller chip which serializes the data from hybrids, accepts commands and broadcasts them (phase delayed) to module controllers, etc. There are several ASICs with overlapping functionalities: GOL – Gygabit Optical Link (CERN), a serializer in existence. 40 MHz -> 0.8 (1.6) GHz. GBT – Gygabit Bydirectional Trigger and data link (CERN), in development, multipurpose. >2.5 GHz data bandwidth. LOC – Link On a Chip (SMU), in development, serializer, ~5 GHz bandwidth.

2008/08/12V. Fadeyev (UCSC)15 Demo Link status The idea: –Use the GOL to construct an optical link to read out the staves under development. –Provide a Giga-bit optical link that develops together with the detector and front-end ASICs. –Provide a test vehicle to study system and integration issues at an early stage. –Demo Links can be quickly constructed with LOC or GBTx when they become available in 2009/2010. –These demo links will lead a baseline design for final production, installation evaluations and will provide links for reliability studies before the production begins. The status: –Next page. The plan:

2008/08/12V. Fadeyev (UCSC)16 The plan: –Currently layout the two interface boards. –FPGA code development when all boards are out for fabrication and assembly. –8/25 – 9/5: debugging at SMU. –9/10, 11: first test at LBNL. –May need a few integration tests and modifications of the interface boards. –Will provide boards to interested groups for system level studies by the end of this year.

2008/08/12V. Fadeyev (UCSC)17 LOC2 status Design status: –Currently carry out post layout simulations on key components to define the speed of LOC2. –Still in discussion with people in Inner Detector and in LAr trying to make LOC2 best fit the needs in both readout. In ID, we need to work more closely with people who develop the (supper-) module-controller to understand the input to LOC2. We may make use of the fact that the output of MC is already 8B/10B encoded to maximize the use of the bandwidth. –Current simulations show a 5 Gbps LOC2 hopeful. –Details in the following pages. The plan: –after the status report.

2008/08/12V. Fadeyev (UCSC)18 LOC2 Block diagram and challenging spots: 16 bit Input register LVDS to LVCMOS 2:1 MUX to 8 bit 8B/10B Comma PRBS PLL + clks MUX Cntrl config Odd bits shift register Even bits shift register Latch CML driver 2:1 MUX Data Clk_ref Cntrl/Config 16 LVDS 10 bit Serial output to Versatile Link Critical components: 1.PLL. VCO, the first stage divider  speed. Architecture choice: reliability, jitter, implementation. 2.Static D-flip-flop. The building block of the divider, and the shift register  speed. 3.CML driver. Inverter: basic unit of a CMOS circuit. Study the PMOS/NMOS ratio, circuit speed. We may move the 8B/10B encoder out of LOC2 to better interface ID and LAr. That is, we may design dedicated interface chips for LOC’s applications. This is in discussion right now and will be finalized soon.

2008/08/12V. Fadeyev (UCSC)19 LOC2 work plan, near future Finalize the structure: with 8B/10B encoder or move the encoder out. With the latter, dedicated interface chips will be designed to best cope with the input data and maximize the use of the link bandwidth. Post layout studies on all the critical components and understand the speed of LOC2. At this moment, 5 Gbps is hopeful. Careful studies on the PLL, mostly the RJ, or phase noise. A design review (1 st ), Oct./Nov. time frame, at BNL or CERN on the critical parts. Get help from the community on things we may have overlooked, misunderstand, etc.

2008/08/12V. Fadeyev (UCSC)20 LOC2 work plan, till April 2009 After the 1 st design review, we will move on to –Complete PLL and clock unit design. –Complete the serializer design. –Implement the 8B/10B and 64B/66B Encoders, or design the interface chips. –Implement the control/config unit. –Implement the CML driver. We aim for the 2 nd design review, Jan./Feb. 2009, on the whole chip or chip set. We aim for the April 09 submission, and the tests in lab July 09. We will provide demo-link and system design document for groups that are interested in using this chip in the fall of Full evaluation of LOC2, including irradiation tests are planned to take place in the fall of Reference: GBTx is planned to be available end of 2009.

2008/08/12V. Fadeyev (UCSC)21 Irradiation tests on optical fiber To complete a rad-tol optical link system, one needs to identify rad-tol components such as VCSEL, fiber and PINs. This part of the work is now the Versatile Project. At SMU, we identified a 10G fiber and performed several tests on the fiber. The report here consists: –Results from ATLAS LAr. –Narrow down to Germanium doped GRIN fiber. –Preliminary tests.

2008/08/12V. Fadeyev (UCSC)22 Preliminary tests Gamma (Co-60) and Proton (230 MeV) tests Infinicor SX+ 50/250  m/1.6mm MM. 10G fiber from Corning. Germanium doped. Very small light loss at low flux (dose rate). Big loss at high flux but anneals very quickly (within 1 hour) back. Fiber under proton test

2008/08/12V. Fadeyev (UCSC)23 Preliminary tests Co-60 at BNL, dose rate: 30 krad/hr. Fiber: Corning Infinicor SX+ 50/125 MM fiber, 45 m under irradiation. Total RIA: 0.04 dB/m after 1.4 Mrad. Annealing effects observed. More annealing results will follow once we get our equipment back to SMU. Run #Dose (krad) Accumulated dose (krad)fibre RIA (dB) Accumulated RIA (dB) Ref. fiber (dB) Accumulated ref. fiber (dB)

2008/08/12V. Fadeyev (UCSC)24 Conclusion on fiber (preliminary) Corning Infinicor SX+ 50/125 MM fibers from different production batches, packaging companies were irradiated with gamma (Co-60) and proton (230 MeV). More tests with higher dose rate and total dose are to be carried out by Oxford group to reach 50 Mrads. Careful data analysis, especially on annealing effects, needs to be carried out. More tests, especially neutron or proton may be needed to study possible NIEL effect, or to confirm that the lack of it. Preliminary results indicate that this fiber may be suitable for ID upgrade.

2008/08/12V. Fadeyev (UCSC)25 Summary The GOL based demo link will be constructed and put to use in Sept./Oct. time frame. This demo link will be used to perform many system level studies on the Giga-bit optical link. Demo links based on LOC or GBTx will follow. This exercise will lead to a baseline design for the upgrade of optical readout. The LOC2 design is on track for a user chip in It is hopeful to achieve 5 Gbps speed. We need to work more closely with upstream ASIC developers to define the interface. R&D work in the frame of Versatile Link project is on-going to identify components for a rad-tol optical link. At least one type of fiber (Corning Infinicor SX+ 50/125 MM ) has been tested with gamma and proton and the preliminary results indicate that this fiber may be suitable for the ID upgrade.

2008/08/12V. Fadeyev (UCSC)26 Backup Slides

2008/08/12V. Fadeyev (UCSC)27 Effect of the Tap Put 10 pF load at the source in two ways: 1) serially 2) via 2 cm long tap. Serial insertionWith 2 cm long tap

2008/08/12V. Fadeyev (UCSC)28 Eye Diagrams with 4 x 2 pF loads Straight traceZigzag trace Worst cases are near the source (tap 1).