Capri Spring School Current Topics in Quantum Hall Research Allan MacDonald University of Texas at Austin
1.QHE – Incompressible States 2.QHE – Edge States & Line Junctions 3.QHE – Bilayer Spontaneous Coherence & Counterflow Superfluidity
I
I – References on QHE cond-mat/ Introduction to the Physics of the Quantum Hall Regime (figures available by request The Quantum Hall Effect (Richard Prange and Steven Girvin)
Two-Dimensional Electron Gas
Ga As ultra high vacuum heated cells high quality GaAs substrate Al Molecular Beam Epitaxy
Integer Quantum Hall Effect xy /(h/e 2 ) xx
Cyclotron Orbits
Landau Levels
Lowest Landau Level Orbit Center Ladder Operator Bottom of Ladder Analytic Wavefunctions
Incompressible States & Streda Formula Compressibility Edge Current Conductance and LL degeneracy
Fractional Quantum Hall Effect
Haldane Pseudopotentials Center of Mass & Relative 2-particle states Haldane Pseudopotentials Details Hardly Matter!
Laughlin Wavefunction FQHE Hamiltonian LLL Wavefunctions COM & Relative for each pair Hard-core model E=0 Eigenstates Laughlin Wavefunction
Fractionally Charged Quasiparticles
Composite Fermions Flux Attachment =1/3 = 1 = 2/5 Fractionally Charged Quasiparticles
Thermodynamic Stability? Hard Core Model Chemical Potential vs. Density
Outline I 2DEG, QHE/FQHE, Landau Levels, Thermodynamic Argument, Haldane Pseudopotentials, Laughlin State, Fractionally Charge Quasiparticles, Composite Fermions, Thermodynamic Instability II Edge States,Chiral Luttinger Liquids, Line Junctions, Experiment Canonical Line Junction Models, Sine-Gordon Models III Experiment, Bilayer Mean Field Theory, Easy-Plane Ferromagnet Analogy, Josephson-Junction Analogy Counterflow Superfluidity, Interlayer Tunneling
II
II – Quantum Hall Edge State References Review: A.M. Chang, Rev. Mod. Phys. 74, 1449 (2003) Original Chiral Luttinger Liquid Paper: X.G. Wen, Phys. Rev. B 41, (1990)
Quantum Hall Edge States Skipping Orbits
Edge States X = k l 2 k F1 k F0 i = k F /2π
Field Theory of QH Edge Hamiltonian More on V later
Field Theory of QH Edge Creation & Annihilation Free Chiral Bosons Filling Factor
Field Theory of QH Edge Conjugate Variable Local Fermi Wavevector Chiral Density Wave
Edge Magnetoplasmons Frequency Domain:Wassermeier et al. PRB (1990)
Time Domain: Ashoori et al. PRB (1992) ns Magnetoplasmons in time Domain
First Quantization Bosonization
Bosonization by Example
Luttinger Liquids 3D E k 1D
Density of States Anomaly
Spin-Charge Separation Alexi Tsvelik
Tunneling DOS Calculation Fermi Golden Rule
Tunneling DOS Calculation
Tunneling into Edge Tunneling Grayson, Chang et al. PRL 1998,2001
Noise: Glattli et al. PRL (1997); Heiblum et al. (1997) Edge State Measurements
But … what’s this?? voltmeter 0 Roddaro et al. (Pisa) PRL 2003, DEG Hall Bar
and … what’s this?? Roddaro et al. (Pisa) PRL 2003, 2004, 2005
Quantum Hall Line Junction Quantum Hall Condensate Quantum Hall Condensate X=0 X=L/4 X=L/2 X=3L/4
Magnetoplasmons in Line Junction Systems Safi Schulz PRB 1995,1999
Outline I 2DEG, QHE/FQHE, Landau Levels, Thermodynamic Argument, Haldane Pseudopotentials, Laughlin State, Fractionally Charged Quasiparticles, Composite Fermions, Thermodynamic Instability II Edge States,Chiral Luttinger Liquids, Line Junctions, Experiment Canonical Line Junction Models, Sine-Gordon Models III Experiment, Bilayer Mean Field Theory, Easy-Plane Ferromagnet Analogy, Josephson-Junction Analogy Counterflow Superfluidity, Interlayer Tunneling
Line Junction Systems – Split Gate
Line Junction Systems – CEO Kang et al. Nature 2002
Corner Line Junctions Grayson et al. 2004, 2005
Interaction Parameter Theory Hartree-Fock Energy Functional
Interaction Parameter Theory Simple Chiral Edge X = k l 2 ε(k) ’’ = δk/2π
Interaction Parameter Theory Simple Chiral Edge X = k l 2 ε(k) ’’ = δk/2π Attraction to NeutralizingBackground EMP Velocity
Quantum Hall Domain Walls Baking Bread
Sine-Gordon Model Kang et al. Nature 2002 Sine-Gordon Model
Fun with 2D Electrostatics Co-Planar appox. Conformal transformation
Smooth Edge Model
III
III – Bilayer Condensates Reference J.P. Eisenstein and A.H. MacDonald Nature 432, 7018 (2004).
superfluid helium superconductor Bose-Einstein Condensates (BECs) BEC of sodium atoms Durfee & Ketterle, Optics Express 2, 299 (1998)
References Eisenstein and AHM - cond-mat/0404 Nature Dec (2004) Abolfath, Radzihovsky & AHM – PRB (2004)
History of Superconductivity Kammerlingh Onnes 1911 Bardeen-Cooper-Schrieffer (BCS) 1957 Brian Josephson 1962 Bednorz and Mueller 1986 T ρ
Electrons polarize nearby ions creating surplus of positive charge Attractive e-e Interactions
Pairs of electrons behave like bosons coherent many- body wavefunction Order Parameter is Classical Energy Barriers are Large
Electron-Electron Pairs Cooper PairsOrder Parameter Superflow
Outline I 2DEG, QHE/FQHE, Landau Levels, Thermodynamic Argument, Haldane Pseudopotentials, Laughlin State, Fractionally Charged Quasiparticles, Composite Fermions, Thermodynamic Instability II Edge States,Chiral Luttinger Liquids, Line Junctions, Experiment Canonical Line Junction Models, Sine-Gordon Models III Experiment, Bilayer Mean Field Theory, Easy-Plane Ferromagnet Analogy, Josephson-Junction Analogy Counterflow Superfluidity, Interlayer Tunneling
Ga Al Si Bilayers
III QHE for =1/2 + 1/2 Spontaneous Phase Coherence
QH Bilayers Easy-Plane Ferromagnets Excitonic BECs (Josephson Junctions)
Excitons – Elementary Excitations of Intrinsic Semiconductors e - h h e
… also Keldysh JETP 1968
Electron-Hole Pairs (n’,n)=( , ) =Ferromagnetism (n’,n)=(c,v) = Excitonic BECs (n’,n)=(TopLayer,BottomLayer) Order Parameter Counterflow Superflow
Excitonic BEC and Superfluidity?
3D E c + E V 2D Bilayer E c + E V 2D Bilayer in Field Exciton Condensation in Semiconductors Keldysh 1964 Lezovik 1975 Kuramoto 1978
BCS Nambu-Gorkov & PHT Attractive Interactions Repulsive Interactions
E c + E V 2D eh Bilayer E c + E V 2D eh Bilayer in Field Exciton Condensation in Bilayers Lezovik 1975 Kuramoto 1978 Bilayer QH 1991 E c + E V 2D ee Bilayer in Field
WHAT? Spontaneous Interlayer Coherence WHY? Gain in Interlayer Correlation Energy exceeds loss in Intralayer Correlation Energy TT Disordered Ordered BB Top Layer Electron Bottom Layer Electron Cloud Mean-Field Theory Description
Electrons and Holes in the QH Regime Add magnetic field Particle-hole transformation Assemble Bilayer
How to detect an excitonic BEC No Odd Channel Resistivity 1996
e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - e - Independent Contacts
Interlayer Voltage 0 Tunneling rate 0 Weak to Strong Coupling Transition
I I e - voltmeter 0 0
Electron-hole Pair Current
Superflow in Electron-Electron Bilayers Kellogg and Eisenstein cond-mat/
Superflow in Electron-Electron Bilayers Kellogg and Eisenstein cond-mat/
Topological Charge = Electric Charge
Vortex-Flow Dissipation
Collective Dynamics & Dissipation Ferromagnets vs. Josephson Junctions vs. Bilayers J.J. Dynamics Thin Film Ferromagnet Dynamics
Joglekar TDHFA+SCBA Joglekar PRL (2002)
Collective Dynamics Ferromagnets vs. Josephson Junctions vs. Bilayers J.J. Dynamics Thin Film Ferromagnet Dynamics +I st
=1, Ql B =0.838, V 0 /(e 2 / l B )=1.5, N =36, Symmetric Disorder local density super-current: pseudo-spin d/l B =0.5
Collective Spin Transport I Easy Plane Free Magnet Perpendicular Easy- Axis Pinned Magnet Konig AHM et al. PRB (2003); PRL (2001)
Easy-Plane Current-Driven Dynamics Easy-Plane Fero = Superconductor = Quantum Hall Bilayer LL Dynamics Uniaxial Anisotropy Current Driven Micromagnetic Exchange
Spin Supercurrent I Konig AHM et al. PRB (2003); PRL (2001) Super Spin Current
Nunez+AHM, cond-mat/ Spin-Transfer Theory
Transport Orbitals eV Condensate Orbitals K = X l 2 Coherent Edge Transport E mpl eV Δ QP eV G e 2 /h Δ t eV V * Volts
Excitonic BEC does occurs in Bilayer QH Systems Excitonic BEC does lead to dramatic collective transport Challenges for Theory Height, width and field-dependence of zero-bias tunneling peak?? Hall and Longitudinal Resistivity at Finite T??
Outline I 2DEG, QHE/FQHE, Landau Levels, Thermodynamic Argument, Haldane Pseudopotentials, Laughlin State, Fractional Charge Quasiparticles, Composite Fermions, Thermodynamic Instability II Edge States,Chiral Luttinger Liquids, Line Junctions, Experiment Canonical Line Junction Models, Sine-Gordon Models III Experiment, Bilayer Mean Field Theory, Easy-Plane Ferromagnet Analogy, Josephson-Junction Analogy Counterflow Superfluidity, Interlayer Tunneling