Manchester 09/sept/2008A.Falou & P.Cornebise {LAL-Orsay}1 CALICE Meeting/ Manchester Sept 2008 SLAB Integration & Thermal Measurements.

Slides:



Advertisements
Similar presentations
Electrical Thermography The Electrical Thermography serves to detect thermal anomalies in electrical installations. Electrical installations and facilities.
Advertisements

CALICE Dave Bailey. Aims and Objectives Develop the technology to build a high- resolution tracking calorimeter for ILC experiments Main thrusts: –Testbeam.
Rosier Ph. – IPNO – Detector Dpt. – 27/05/2011APRIME HPS collaboration meeting 1/24 1- Vacuum chamber proposal 1.1- Stainless steel chamber design and.
Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 1 SLAB Integration & Thermal Measurements Slides Overview Thermal Measurements (Demonstrator)
FE electronic box Construction of end piece OT module Electronic components Mechanics Cooling.
Mechanical Status of ECAL Marc Anduze – 30/10/06.
David Bailey Manchester. Summary of Current Activities UK Involvement DAQ for SiW ECAL (and beyond) “Generic” solution using fast serial links STFC (CALICE-UK)
The AMS-02 detector is based on a large acceptance (~0.5 m²sr) and high sensitivity spectrometer composed by a super-conducting magnet (0.8 T), cooled.
1 Module and stave interconnect Rev. sept. 29/08.
IBL Mock Up IBL Mock Up MANUFACTURING 2011/04/29 François-Xavier NUIRY Maxence CURDY Andrea CATINACCIO CERN PH/DT/PO 1.
WP7&8 Progress Report ITS Plenary meeting, 23 April 2014 LG, PK, VM, JR Objectives 2014 and current status.
1 Cryostat assembly, integration and commissioning procedures M.Olcese Version: 07 May 2008.
Marc Anduze – 09/09/2008 News on moulds and structures CALICE meeting - Manchester.
1 Denis Grondin – Sept.23 TH, 2010 Cooling & mechanics status CALICE Collaboration Casablanca at LPSC ECAL.
17/06/2010UK Valencia RAL Petals and Staves Meeting 1 DC-DC for Stave Bus Tapes Roy Wastie Oxford University.
Mickael Frotin– 07/06/2009 Demonstrator - Assembly ECAL meeting - London.
ECAL silicon- tungsten status
Mickael Frotin– 15/01/2010 ECAL MACHANICAL R&D ECAL meeting - PARIS 1.
FEV Boards status N. Seguin-Moreau on behalf of
, T. Tischler, CBM Collaboration Meeting, GSI Status MVD demonstrator: mechanics & integration T.Tischler, S. Amar-Youcef, M. Deveaux, D. Doering,
Marc Anduze – 09/09/2008 Report on EUDET Mechanics - Global Design and composite structures: Marc Anduze - Integration Slab and thermal measurements: Aboud.
Mechanical Status of EUDET Module Marc Anduze – 05/04/07.
Cristina Lo Bianco - LLR Cosmics test for the W-Si prototype (CALICE) Why the test in cosmics? The cosmics test-bench DAQ for the cosmics test-bench All.
Montpellier, November 12, 2003Vaclav Vrba, Institute of Physics, AS CR 1 Vaclav Vrba Institute of Physics, AS CR, Prague CALICE ECal Status Report.
16/04/20031PNPI / LHCb Muon EDR Wire Pad Chambers PNPI design for regions R4 in Stations M2,M3,M4  4 gas gaps of 5mm±70µm;  Active area: 1224x252.8 mm².
29-Jun-09H. Henschel DESY (Zeuthen) 1 Frontend Interface Summarize.
EUDET JRA3 ECAL in 2007 : towards “The EUDET module” C. de La Taille IN2P3/LAL Orsay.
MFT WG5: ladder disk and global assembly Stéphane BOUVIER & Sébastian HERLANT MFT WG7: Mechanics and Thermal studies Jean-Michel BUHOUR & Emili SCHIBLER.
Thursday Sept 17, 2009CALICE week IPN Lyon1 EUDET Module Plans of integration and assembly Julien Bonis SLAB assembly : Process phases.
Integration with LDC & Push-pull impact on LumiCal Wojciech Wierba Institute of Nuclear Physics PAN Cracow, Poland FCAL Workshop, LAL Orsay,
Proposal for the assembly of the PHOBOS ring counters (H.P. 3/20/98) I would like to propose and discuss with you an alternative layout and assembly procedure.
Possible types of module Si/W CALORIMETER CONCEPT Si/W CALORIMETER CONCEPT G.Bashindzhagyan Moscow State University June 2002 Internal structure (not in.
CALICE SiW EcalAboud Falou/ LAL-Orsay Detector SLAB Integration EUDET Prototype Slab cross section, thickness budget Space Frame Ladder {Step.
Update on Micro Channel Cooling Collaboration Meeting , G. Nüßle.
D. M. Lee, LANL 1 07/10/07 Forward Vertex Detector Overview Technical Design Overview Design status.
M. Sannino for S. Cuneo - I.N.F.N. Genova1 Rich2 MAPMT Housing & Cooling Outdated designs and what is needed to get a final executive design Imperial College.
– EUDET module – Report from Mechanics Brainstorming Marc Anduze – 30/06/2009 Laboratoire Leprince Ringuet Ecole polytechnique - Palaiseau.
CERN SPD meeting, 4/06/2002V. Manzari for Bari SPD-Group1 Half-stave assembly Gluing procedure & glue characteristics Status of dummy components.
Marc Anduze – CALICE Meeting – KOBE 10/05/07 Mechanical R&D for Technological EUDET ECAL Prototype.
Zaragoza, 5 Julyl Construction of and experience with a 2.4 x 1 m² micromegas chambers Givi Sekhniaidze On behalf of the Micromegas community.
SiD Hcal structure & 1m² Micromegas chamber prototype CALICE 2009 – LYON – 2009, septembre 17 th.
RICH2 support and cooling mechanics status update Massimo Benettoni July 30,
Vessel dimensions GTK assembly carrier Electrical connections Cooling pipes integration Vessel alignment with the beam Next steps Conclusion 3/23/20102electro-mechanical.
WP7&8 Progress Report ITS Plenary meeting, 10 June 2014 LG, PK, VM, JR.
DOE CD-2/3a Review of the BTeV Project – December 14-16, BTeV Pixel Detector Pixel Module Assembly and Half-Plane Assembly Guilherme Cardoso James.
EMC BWE Proto18 - Orsay Meeting 1 PANDA EMC BWE Proto18 Mikel Catania Goikoetxea, Javier Navarro Medrano, David Rodríguez Piñeiro, Yue Ma, Frank.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
FP420 Hybrid Mechanical Design Ray Thompson / Manchester Manchester Xmas O7 Ray Thompson Julian Freestone, Andy Elvin.
Origami and Cooling 24th September 2012 C. Irmler (HEPHY Vienna) Joint PXD and SVD Meeting Göttingen.
SiW ECAL Marcel Reinhard LLR – École polytechnique LCWS ‘08, Chicago.
B2GM, Nov 2014 Laci Andricek, MPG Halbleiterlabor 1 PXD Ladder Assembly - Conceptual design of jigs -
SiW Electromagnetic Calorimeter - The EUDET Module Calorimeter R&D for the within the CALICE collaboration SiW Electromagnetic Calorimeter - The EUDET.
Marc Anduze first drawings of Ecal eudet module COPIED FROM : Marc Anduze PICTURES FROM : CALICE/EUDET electronic meeting – CERN – 12 July 07.
Marc Anduze – EUDET Meeting – PARIS 08/10/07 Mechanical R&D for EUDET module.
EUDET Extended SC SiW Ecal 1 SiW Ecal EUDET Module - General Schedule - Development of Different Components - (Towards) a working prototype Roman.
EUDET Annual Meeting SiW Ecal 1 SiW Ecal EUDET Module - General Schedule - Development of Different Components - (Towards) a working prototype Roman.
Mickael Frotin– 19/10/2009 ECAL MACHANICAL R&D CALICE meeting - Genève 1.
Integral Field Spectrograph Opto-mechanical concepts PIERRE KARST, JEAN-LUC GIMENEZ CPPM(CNRS),FRANCE.
EUDET HCAL prototype; mechanics Felix Sefkow Work by K.Gadow, K.Kschioneck CALIC collaboration meeting Daegu, Korea, February 20, 2009.
Baby-MIND Modules & Services
The EMC cooling F. Raffaelli INFN - Pisa 06/09/2017.
A. Vande Craen, C. Eymin, M. Moretti, D. Ramos CERN
Mechanical aspects of SiW Ecal PCBs
LumiCal mechanical design, integration with LDC and laser alignment
FP420 Detector Cooling Thermal Considerations
Equipment for Assembly – UK Experiences
New Design for Beam Test Structure
CALICE Collaboration Meeting KEK/Japan – April 2015
Ecal Front End Electronics
Possible types of Si-sensor: SILICON CALORIMETRY FOR A LINEAR COLLIDER G.Bashindzhagyan, Il Park August Silicon sensor.
Presentation transcript:

Manchester 09/sept/2008A.Falou & P.Cornebise {LAL-Orsay}1 CALICE Meeting/ Manchester Sept 2008 SLAB Integration & Thermal Measurements

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 2 Detector SLAB Integration Thickness budget & Tolerances Integration Cradle & H structure Fastening HV Kapton & ASU insertion + interconnection Copper Shield & Housing installation DIF plugging with possible clamping to Cu shield SLAB Link to Cooling device & Electronic Setup SLAB ready to Electronic Qualification Tests at operating temperature (inside alveolar sector)

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 3 1. Copper housing: 100 µm 2. Copper heat shield: 400 µm 3. PCB & chips: 1200 µm 4. Thermal grease: 0 µm {in the Cu holes covering chips wire bonding} could balance final tolerances result 5. Si Wafer + glue ~= 400 µm 6. HV Kapton feeding + contact interface ~= 150 µm 7. Sub total ~= 2250 µm Heat shield: 400 µm Housing: 100 µm PCB: 1200 µm HV Kapton ® film: 100 µm + 50 µm Thickness Budget (SLAB cross section)

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 4 Integration Cradle & H Structure Fastening  Aluminum Rectangular Frame : fully adapted to H structure with free access to detector sensitive components {HV feeding, ASU + Terminal Boards} & Copper shielding parts. 1. Lateral fastening of H structure to integration cradle {adequate screws + rubber ends on few locations along opposite H edges} 2. Adjustment of the straight alignment between H structure and integration cradle line {giving common reference of slab components & proximity parts (cooling device, external supports etc…} 3. Connection of 2 stable bearings to integration cradle ends {allowing 180° up side down tilt of the assembly}

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 5 Integration Cradle & H Structure Fastening Locations along 2 opposite H edges

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 6 HV kapton feeding & ASU insertion + interconnection 1. Insertion of HV kapton feeding into H structure {straight alignment, one end clamping to integration cradle + few glue drops to H edges} 2. unit-1 A.S.U insertion & HV connection {connection/disconnection ‘spring’ process to be studied} 3. unit-2 A.S.U insertion & HV connection 4. unit-1 to unit-2 interconnection {bridge soldering technique under study to answer major specifications} 5. Electrical continuity test & unit-3, unit-4… insertion, interconnection 6. Qualification test of all ASU + terminal boards, PCB ‘soft gluing to H 7. After Cu Shield + housing installation, 180° up side down tilt, then same procedure for ‘inner’ slab insertion & interconnection {HV kapton, ASU, qualification tests}

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 7 ASU insertion + interconnection Vacuum pads location {4 non sensitive spots} Vacuum pads location for alignment/handling After ASU alignment along H edges, these vacuum pads should stabilize 2 ASU each other during bridge soldering. At Si wafers side, if the temperature rising is critical, temporary cold thermo conductive foam could be placed in- between HV kapton & ASU (soft contact with Si wafers).

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 8 Copper Shield & Housing installation {Thermo conductive Grease} 1. Copper shield alignment & installation on the slab by vacuum pads handling {DIF board is not plugged in yet} 2. Filing Cu shield square holes with thermo conductive grease {thermo contact between Cu shielding & PCB could improve cooling process} 3. Secure link of Copper Shield to H structure with few glue drops 4. Cu housing insertion & clamping to H edges by vacuum pads handling {some thermo conductive grease could balance thickness tolerances} ° up side down tilt, then identical procedure at inner slab side 6. Final thickness control with matrix template using H structure & calibrated shims as solid stoppers 7. Detector slab ready to be inserted into alveolar sector

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 9 Copper Shield & Housing installation Housing 100 micron Cu plate clamped to H edges Cu shielding inner & outer slab sides (400 micron) DIF area should be modified according to next slide LPSC specification drawing ( of ) To improve thermal contact with DIF active components, clamping technique need to be studied.

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 10 DIF area on the Copper Shield

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 11 Open Questions SLAB integration & thermal measurements 1. To improve thermal contact & mechanical stability as well, Should we fasten DIF board to copper shield ? 2. To prevent damage & maintain constant electrical contact, is clamping of proximity cables/services to mechanical support needed ? 3. From disassembly issues, electrical contact between Si wafers & HV kapton feeding is given by direct pressure, what is its origin ? 4. What is power dissipation range of DIF & adaptor board ? 5. Should we operate with single contact FPGA/Cu shield ?

Manchester 09/sept/2008 A.Falou & P.Cornebise {LAL-Orsay} 12 Conclusion/ Next Items SLAB integration & thermal measurements 1. Production of one ‘simplified’ integration cradle + vacuum pads frame to be used with thermal demonstrator 2. Preparation of few Cu shield units with square holes to thermal demonstrator {L=9x( )+40+55=1220, W=124.5mm, t=400micron} + few Cu housing units {L=1320, W=125.6, t=100micron} 3. Preparation/ordering of PCB, resistors, T°C sensors, cables etc… & thermal demonstrator integration 4. Correlation between cooling studies (FEM calculation) & operating measurements 5. Selection of thermo conductive grease