AP Statistics Thursday, 23 January 2014 OBJECTIVE TSW investigate sampling distributions. TESTS are not graded.

Slides:



Advertisements
Similar presentations
Sampling Distributions
Advertisements

Chapter 10: Estimating with Confidence
Sampling Distributions and Sample Proportions
For a Normal probability distribution, let x be a random variable with a normal distribution whose mean is µ and whose standard deviation is σ. Let be.
AP Statistics Thursday, 22 January 2015 OBJECTIVE TSW investigate sampling distributions. –Everyone needs a calculator. TESTS are not graded. REMINDERS.
Sampling Distributions (§ )
1 Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 8 Sampling Variability & Sampling Distributions.
Chapter 7 Introduction to Sampling Distributions
Sampling Distributions
Fall 2006 – Fundamentals of Business Statistics 1 Chapter 6 Introduction to Sampling Distributions.
Confidence Intervals: The Basics
Today Today: Chapter 8, start Chapter 9 Assignment: Recommended Questions: 9.1, 9.8, 9.20, 9.23, 9.25.
Chapter 10: Estimating with Confidence
9.1 – Sampling Distributions. Many investigations and research projects try to draw conclusions about how the values of some variable x are distributed.
Sampling Distributions. Parameter A number that describes the population Symbols we will use for parameters include  - mean  – standard deviation.
Chapter 8 Sampling Distributions Notes: Page 155, 156.
Sampling Distributions. Parameter A number that describes the population Symbols we will use for parameters include  - mean  – standard deviation.
AP Statistics Chapter 9 Notes.
Sampling Distributions of Proportions. Parameter A number that describes the population Symbols we will use for parameters include  - mean  – standard.
Form groups of three. Each group needs: 3 Sampling Distributions Worksheets (one per person) 5 six-sided dice.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 8: Estimating with Confidence Section 8.1 Confidence Intervals: The.
Chapter 8 Sampling Variability and Sampling Distributions.
Chapter 7: Introduction to Sampling Distributions Section 2: The Central Limit Theorem.
1 Chapter 8 Sampling Distributions of a Sample Mean Section 2.
Chapter 8 Sampling Variability and Sampling Distributions.
Chapter 9 Indentify and describe sampling distributions.
Chapter 9 found online and modified slightly! Sampling Distributions.
Review Normal Distributions –Draw a picture. –Convert to standard normal (if necessary) –Use the binomial tables to look up the value. –In the case of.
Sampling Distributions. Parameter  A number that describes the population  Symbols we will use for parameters include  - mean  – standard deviation.
Sampling Distribution, Chp Know the difference between a parameter and a statistic.
AP STATS: Warm-Up Complete the “quiz” 9.1/9.2 with a partner. Don’t use notes or your textbook. If you want to have your quiz graded, hand it in, and.
Chapter 8: Estimating with Confidence
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 8: Estimating with Confidence Section 8.1 Confidence Intervals: The.
Section 7.1 Sampling Distributions. Vocabulary Lesson Parameter A number that describes the population. This number is fixed. In reality, we do not know.
Sampling Distributions Chapter 18. Sampling Distributions A parameter is a number that describes the population. In statistical practice, the value of.
Chapter 9 Sampling Distributions 9.1 Sampling Distributions.
Chapter 8 Sampling Distributions. Parameter A number that describes the population Symbols we will use for parameters include  - mean  – standard.
Chapter 8 Lesson 8.2 Sampling Variability and Sampling Distributions 8.2: The Sampling Distribution of a Sample Mean.
Sampling Distributions
Sampling Variability & Sampling Distributions
Sampling Distributions
Chapter 8 Lesson : The Sampling Distribution of a Sample Mean
Sampling Variability and Sampling Distributions
Sampling Distributions
Sampling Distributions – Sample Means & Sample Proportions
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Sampling Distributions
Sampling Distributions of Proportions
Sampling Distributions
MATH 2311 Section 4.4.

Chapter 8: Estimating with Confidence
Sampling Distributions
Sampling Distributions
Section 7.1 Sampling Distributions
Click the mouse button or press the Space Bar to display the answers.
CHAPTER 15 SUMMARY Chapter Specifics
Chapter 8: Estimating with Confidence
Sampling Distributions
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
Chapter 8: Estimating with Confidence
MATH 2311 Section 4.4.
Presentation transcript:

AP Statistics Thursday, 23 January 2014 OBJECTIVE TSW investigate sampling distributions. TESTS are not graded.

Chapter 8 Sampling Distributions

Parameter A number that describes the population Symbols we will use for parameters include  - mean  – standard deviation  – proportion (p)  – y-intercept of LSRL  – slope of LSRL

Statistic A number that can be computed from sample data without making use of any unknown parameter Symbols we will use for statistics include x – mean s  – standard deviation p  – proportion a  – y-intercept of LSRL b  – slope of LSRL

Identify the boldface values as parameter or statistic A carload lot of ball bearings has mean diameter cm. This is within the specifications for acceptance of the lot by the purchaser. By chance, an inspector chooses 100 bearings from the lot that have mean diameter cm. Because this is outside the specified limits, the lot is mistakenly rejected. parameter statistic

Why do we take samples instead of taking a census? A census is not always accurate. Censuses are difficult or impossible to do. Censuses are very expensive to do.

distribution A distribution is all the values that a variable can be.

sampling distribution The sampling distribution of a statistic is the distribution of values taken by the statistic in all possible samples of the same size from the same population.

Consider the population – the length of fish (in inches) in my pond - consisting of the values 2, 7, 10, 11, 14  x = 8.8  x = What is the mean and standard deviation of this population?

Let’s take samples of size 2 (n = 2) from this population: How many samples of size 2 are possible?  x = 8.8  x = C 2 = 10 Find all 10 of these samples and record the sample means. What is the mean and standard deviation of the sample means?

Repeat this procedure with sample size n = 3 How many samples of size 3 are possible? 5 C 3 = 10  x = 8.8  x = What is the mean and standard deviation of the sample means? Find all of these samples and record the sample means.

What do you notice? EQUALSThe mean of the sampling distribution EQUALS the mean of the population. As the sample size increases, the standard deviation of the sampling distribution decreases.  x  =  as n xx

unbiased A statistic used to estimate a parameter is unbiased if the mean of its sampling distribution is equal to the true value of the parameter being estimated.

Rule 1: Rule 2: This rule is approximately correct as long as no more than 5% (10%) of the population is included in the sample. General Properties:  x  =   n  x = standard error The standard error of a statistic is the estimated standard deviation of the statistic.

General Properties Rule 3: When the population distribution is normal, the sampling distribution of x is also normal for any sample size n.

General Properties Rule 4: Rule 4: Central Limit Theorem When n is sufficiently large, the sampling distribution of x is well approximated by a normal curve, even when the population distribution is not itself normal. CLT can safely be applied if n exceeds 30.

AP Statistics – Friday,  Get a calculator.  We will finish the PPT first.  The WS “Sample Means” that you receive today will be due next Friday.  Get a computer and log in. (Make sure the blue “internet” light is on.)  The WS that goes with the activity is due today.

mpling_dist/index.html

We stopped here!!!!

(Example 1) The army reports that the distribution of head circumference among soldiers is approximately normal with mean 22.8 inches and standard deviation of 1.1 inches. a) What is the probability that a randomly selected soldier’s head will have a circumference that is greater than 23.5 inches? P(X > 23.5) = normalcdf (23.5, 10 99, 22.8, 1.1) =

b) What is the probability that a random sample of five soldiers will have an average head circumference that is greater than 23.5 inches? What normal curve are you now working with? Do you expect the probability to be more or less than the answer to part (a)? Explain P(X > 23.5) = =

If n is large or the population distribution is normal, then has approximately a standard normal distribution.

(Example 2) Suppose a team of biologists has been studying the Pinedale children’s fishing pond. Let x represent the length of a single trout taken at random from the pond. This group of biologists has determined that the length has a normal distribution with mean of 10.2 inches and standard deviation of 1.4 inches. What is the probability that a single trout taken at random from the pond is between 8 and 12 inches long? P(8 < X < 12) =

What is the probability that the mean length of five trout taken at random is between 8 and 12 inches long? What sample mean would be at the 95 th percentile? (Assume n = 5) P(8< x <12) = Do you expect the probability to be more or less than the answer to part (a)? Explain x = inches

AP Statistics Friday, 25 January 2013 OBJECTIVE TSW investigate sampling distributions using a simulation ASSIGNMENT DUE –WS Sample Means TESTS are not graded. Everyone needs to get a computer and log in. –Make sure the blue light is illuminated before logging in. –At the end of the period, plug in the computer to its power supply and make sure it fits neatly in the COW. BW from Tuesday (01/23) is due Monday (01/28).

(Example 3) A soft-drink bottler claims that, on average, cans contain 12 oz of soda. Let x denote the actual volume of soda in a randomly selected can. Suppose that x is normally distributed with  = 0.16 oz. Sixteen cans are selected with a mean of 12.1 oz. What is the probability that the average of 16 cans will exceed 12.1 oz? Do you think the bottler’s claim is correct? No, since it is not likely to happen by chance alone & the sample did have this mean, I do not think the claim that the average of 12 oz. is correct. P(x >12.1) =

(Example 4) A hot dog manufacturer asserts that one of its brands of hot dogs has an average fat content of 18 grams per hot dog with standard deviation of 1 gram. Consumers of this brand would probably not be disturbed if the mean was less than 18 grams, but would be unhappy if it exceeded 18 grams. An independent testing organization is asked to analyze a random sample of 36 hot dogs. Suppose the resulting sample mean is 18.4 grams. Does this result indicate that the manufacturer’s claim is incorrect? What if the sample mean was 18.2 grams, would you think the claim was incorrect? Yes, not likely to happen by chance alone. No

Assignment WS Sample Means –Due tomorrow, Friday, 24 January 2014.

AP Statistics Monday, 28 January 2013 OBJECTIVE TSW finish investigating sampling distributions using a simulation ASSIGNMENT DUE –BW: 8.3, 8.9 Everyone needs to get a computer and log in. –Make sure the blue light is illuminated before logging in. –At the end of the period, plug in the computer to its power supply and make sure it fits neatly in the COW.