Preparation to the CMB Planck analysis: contamination due to the polarized galactic emission L. Fauvet, J.F. Macías-Pérez 1.

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Observational constraints and cosmological parameters
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
CMB and cluster lensing Antony Lewis Institute of Astronomy, Cambridge Lewis & Challinor, Phys. Rept : astro-ph/
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Lecture 2 Temperature anisotropies cont: what we can learn CMB polarisation: what it is and what we can learn.
QUIET Q/U Imaging ExperimenT Osamu Tajima (KEK) QUIET collaboration 1.
Modeling of the galactic polarized foreground emissions to minimize the contamination of the BB modes L. Fauvet, J.F. Macías-Pérez, F.-X. Désert 1.
Planck 2013 results, implications for cosmology
The Ability of Planck to Measure Unresolved Sources Bruce Partridge Haverford College For the Planck Consortium.
Cosmic Microwave Background, Foregrounds and Component Separation What are foregrounds and how to deal with them in CMB data analysis Carlo Baccigalupi,
Cambridge CMB meeting 20 th July 2009 CMB B-modes: Foregrounds Paddy Leahy, Clive Dickinson, Mike Preece, Mike Peel (Manchester)
Systematic effects in cosmic microwave background polarization and power spectrum estimation SKA 2010 Postgraduate Bursary Conference, Stellenbosch Institute.
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
Photo: Keith Vanderlinde Detection of tensor B-mode polarization : Why would we need any more data?
Distinguishing Primordial B Modes from Lensing Section 5: F. Finelli, A. Lewis, M. Bucher, A. Balbi, V. Aquaviva, J. Diego, F. Stivoli Abstract:” If the.
Contamination of the CMB Planck data by galactic polarized emissions L. Fauvet, J.F. Macίas-Pérez.
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
Component Separation of Polarized Data Application to PLANCK Jonathan Aumont J-F. Macías-Pérez, M. Tristram, D. Santos
N. Ponthieu Polarization workshop, IAS, Orsay, 09/15/ N. Ponthieu (IAS) The conquest of sky polarization The upper limits era First detections Prospects.
A Primer on SZ Surveys Gil Holder Institute for Advanced Study.
CMB polarisation results from QUIET
SLAC, May 12th, 2004J.L. Puget PLANCK J.L. Puget Institut d'Astrophysique Spatiale Orsay.
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
WMAP and Polarization APS February 16, 2010 In remembrance of Andrew Lange L. Page.
Modelling radio galaxies in simulations: CMB contaminants and SKA / Meerkat sources by Fidy A. RAMAMONJISOA MSc Project University of the Western Cape.
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
The Implication of BICEP2 : Alternative Interpretations on its results Seokcheon Lee SNU Seminar Apr. 10 th
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
Early times CMB.
Bill Reach 2009 May 14 Greater IPAC Technology Symposium.
CMB & Foreground Polarisation CMB 2003 Workshop, Minneapolis Carlo Baccigalupi, SISSA/ISAS.
US Planck Data Analysis Review 1 Lloyd KnoxUS Planck Data Analysis Review 9–10 May 2006 The Science Potential of Planck Lloyd Knox (UC Davis)
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Forthcoming CMB experiments and expectations for dark energy Carlo Baccigalupi.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
LHC conference - Isfahan
Joint analysis of Archeops and WMAP observations of the CMB G. Patanchon (University of British Columbia) for the Archeops collaboration.
Galactic Radioemission – a problem for precision cosmology ? Absolute Temperatures at Short CM-Waves with a Lunar Radio Telescope Wolfgang Reich Max-Planck-Institut.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Planck/HFI uses Jet Propulsion Laboratory (JPL) spider-web and polarization-sensitive bolometers cooled to 0.1 K to map the sky in 6 frequency bands from.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Anomalies of low multipoles of WMAP
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
INFRARED-BRIGHT GALAXIES IN THE MILLENNIUM SIMULATION AND CMB CONTAMINATION DANIEL CHRIS OPOLOT DR. CATHERINE CRESS UWC.
Experimental Cosmology Group Oxford Astrophysics Overview CLOVER is a UK-led experiment to detect the B-mode polarisation of the Cosmic Microwave Background.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Planck Report on the status of the mission Carlo Baccigalupi, SISSA.
Blind Component Separation for Polarized Obseravations of the CMB Jonathan Aumont, Juan-Francisco Macias-Perez Rencontres de Moriond 2006 La.
The Cosmic Microwave Background
CMB, lensing, and non-Gaussianities
150GHz 100GHz 220GHz Galactic Latitude (Deg) A Millimeter Wave Galactic Plane Survey with the BICEP Polarimeter Evan Bierman (U.C. San Diego) and C. Darren.
The Planck Satellite Matthew Trimble 10/1/12. Useful Physics Observing at a redshift = looking at light from a very distant object that was emitted a.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
BICEP2 Results & Its Implication on inflation models and Cosmology Seokcheon Lee 48 th Workshop on Gravitation & NR May. 16 th
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
CMB physics Zong-Kuan Guo 《现代宇宙学》
Topics on Dark Matter Annihilation
Towards the first detection using SPT polarisation
Testing Primordial non-Gaussianities in CMB Anisotropies
Latest Results from WMAP: Three-year Observations
Cosmological constraints from tSZ-X cross-correlation
12th Marcel Grossman Meeting,
Cosmology from Large Scale Structure Surveys
A Measurement of CMB Polarization with QUaD
Precision cosmology, status and perspectives
Separating E and B types of CMB polarization on an incomplete sky Wen Zhao Based on: WZ and D.Baskaran, Phys.Rev.D (2010) 2019/9/3.
Presentation transcript:

Preparation to the CMB Planck analysis: contamination due to the polarized galactic emission L. Fauvet, J.F. Macías-Pérez 1

2 The CMB with Planck Polarized foregrounds 3D model of the galaxy: optimization Contamination of the CMB data L. Fauvet Moriond 2010 [LF, Macías-Pérez et al, to be submitted to A&A ]

Planck : ESA mission dedicated to the CMB anisotropies measurement large frequency range : LFI : 30, 44, 70 GHz HFI : 100, 143, 217, 353, 545, 857 GHz full-sky coverage and angular resolution of 5’ sensitivity limited by the ability to subtract astrophysical foregrounds ~ K Ultimate measurement of the CMB temperature anisotropies Best possible measurement of polarization with currently available technologies The PLANCK mission L. Fauvet 3 Moriond 2010

4 expected CMB measurements with Planck EE TT [PLANCK Bluebook,‚the PLANCK collaboration, 2005] L. Fauvet Moriond 2010

5 polarized foregrounds [Gold et al, 2010] I QU L. Fauvet Moriond 2010 WMAP 7-years, Ka band

6 polarized foregrounds instrumental noise dust synchrotron free-free galaxies SZ (cinetic) SZ (thermal) CMB synchrotron dominates at ν < 70 GHz thermal dust dominates at ν > 70 GHz L. Fauvet Moriond 2010

7 dust emission B ω relativistic electron synchrotron emission dust grain starlight polarization synchrotron emission (408 MHz) [Haslam et al, 1982] thermal dust emission (353 GHz) [Finkbeiner et al, 1999] L. Fauvet Moriond 2010 polarized foregrounds

8 physical model of polarized foreground emissions depends on: the shape of the galactic magnetic field : regular component : MLS or ASS free parameter : pitch angle [Han et al, 2006] non regular component [Han et al, 2004] free parameter: A turb halo component, free parameter : A halo the distribution of relativistic electrons, free parameter: h r, CRE lo [Page et al, 2007; Sun et al, 2008] the distribution of dust grains [Page et al, 2007; Paladini et al, 2007] 3D model of the Galaxy [Han et al, 2006] L. Fauvet Moriond, 2010

9 integrating along the line of sight polarization fraction related to the cosmic ray energy dimension slope s : p s = 0.75 idem for thermal dust ◦ thermal dust emission p d : the polarization fraction = 0.1 [Ponthieu et al, 2005] with: ◦ synchrotron emission 3D model of the Galaxy extrapolation at various μ : β s extrapolation at various μ : β d L. Fauvet Moriond 2010

10 ◦ 408 MHz all-sky continuum survey [Haslam et al, 1982] ◦ 5 years of WMAP data NASA satellite currently flying 5 polarized channels between 23 and 94 GHz optimisation of the synchrotron emission model L. Fauvet 3D model of the Galaxy : optimisation [Hinshaw et al, 2009] ◦ ARCHEOPS ballon experiment, flew in polarized channel at 353 GHz optimisation of the thermal dust emission model [Benoit et al, 2003] Moriond 2010

11 I Haslam data, MLS field for various A turb L. Fauvet 3D model of the Galaxy: optimisation Moriond 2010

12 3D model of the Galaxy : optimisation WMAP 5 years data + synchrotron emission (from green to red) (MLS model of magnetic field and exponnential distribution of relativistic electrons) QU L. Fauvet Moriond GHz

GHz galactic profiles for various values of the latitudes the ARCHEOPS data and our model of thermal dust emission (MLS model of magnetic field and exponential distribution of dust grains) L. Fauvet 3D model of the Galaxy : optimisation Moriond 2010 QU

14 for the synchrotron emission A turb < 0.25 B reg p = - 30 ± 20 deg h r < 15 kpc β s = -3.3 ± 0.1 for the dust thermal emission A turb < 0.25 B reg p = - 20 ± 10 deg MLS field L. Fauvet 3D model of the Galaxy : best fit model Moriond 2010

15 I WMAP Q WMAP U WMAP I SYNC Q SYNC U SYNC 23 GHz L. Fauvet 3D model of the Galaxy : best fit model Moriond 2010

L. Fauvet TTEEBB TETBEB 3D model of the Galaxy : best fit model 16 Moriond GHz

17 3D model of the Galaxy : best fit model I ARCH Q ARCH U ARCH I DUST Q DUST U DUST 353 GHz L. Fauvet Moriond 2010

TTEEBB TETBEB 3D model of the Galaxy : best fit model L. Fauvet 18 Moriond GHz

19 Contamination of the CMB data L. Fauvet Moriond 2010

20 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.1 TETBEB EEBBTT 100 GHz L. Fauvet Moriond 2010

21 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.1 BB L. Fauvet Moriond GHz 217 GHz 143 GHz 70 GHz

22 Conclusion coherent models for the diffuse polarized galactic emissions compared to existing data used the best fit model to estimate the foregrounds contamination of the CMB Planck data L. Fauvet Moriond 2010

23 for the synchrotron :for the thermal dust local angle of polarization:

24 MLS ASS [Sun et al, 2008]

25

26 Best fit parameters WMAP 5yrs / synchrotron BSS field, at 23 GHz A turb p(deg)hrhr βsβs A turb < 0.25, p = - 20 ± 10 deg h r < 15kpc, β s = -3.4 ± 0.1

27 non regular field at all scales same intensity as the regular component Kolmogorov spectrum [Han et al, 2006] 3D gaussian simulation with used a power spectrum A turb (dimensionless) : normalisation of the turbulent component B turb = (8μ 0 E B ) 1/2 with μ 0 = 4π H.m -1 3D model of the galaxy 1/k > 15 kpc : C = (9.5 ± 0.3 )* erg.cm -3.kpc α = -5/3 0.5 < 1/k < 15 kpc : C = (6.8± 0.3 )* erg.cm -3.kpc α = [Han et al, 2006] turbulente component

28 L. Fauvet Cosmology Workshop09, 12/11/2009 impact on the CMB data red : synchrotron emission model blue : thermal dust emission model black: 3 years ofWMAP and ARCHEOPS data EE BB

29 [Nolta et al, 2008] TE EE TT L. Fauvet The CMB : current results Cosmology Workshop09, 12/11/2009

30 the CMB : Planck perspectives upper limit of r ≤ 0.05 if no primordial tensor modes detect tensor mode if r ~ 0.03 [Efstathiou et al, 2009] [Planck Bluebook, the Planck collaboration 2005] constraints : n s ~ 0.1 & r ~ 0.05 discriminate inflation models and other models [Komatsu et al, 2008] L. Fauvet BB

31 L. Fauvet Cosmology Workshop09, 12/11/2009 The CMB : current results [Komatsu et al, 2008]

launched the 14 th of May 2009 from Kourou travelled to L2 point and cooling until end of June 2009 final checks until 15 th of August NOW : 14 months of operations for 2 all-sky surveys 2012 : First public data release by ESA ≥ 2013 : Potential second data surveys (He) The PLANCK schedule 32 L. Fauvet First light of Planck [Bouchet, 2009] Rencontres de Moriond, 2010

The Planck mission : scientific objectifs □ Primary anisotropies: cosmological parameters physics of the Early Universe non-gaussianity □ Secondary anisotropies: ISW gravitational lensing reionisation galaxy clusters □ Extragalactic sources : radio sources dusty galaxies and their contaminants □ Galactic & Solar systems : galactic magnetic field & ISM planets and asteroides … [“Planck bluebook”, the Planck collaboration, 2005] 33 L. Fauvet

Formation de la polarisation Diffusion Thomson des photons sur les électrons: Section efficace Anisotropies quadrupolaires responsables de la polarisation du CMB Polarisation Lauranne Fauvet 28/06/2007 (Kosowsky et al (1994))    .| d d 34

35 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 BB L. Fauvet Rencontres de Moriond, GHz 217 GHz 143 GHz 70 GHz

36 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 TETBEB EEBBTT 100 GHz L. Fauvet Rencontres de Moriond, 2010

37 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 TETBEB EEBBTT 143 GHz L. Fauvet Rencontres de Moriond, 2010

Paramètres de Stokes I : intensité Q,U : polarisation linéaire (dépendants du choix du référentiel). V : polarisation circulaire (absente du CMB). Gradient de vitesse non nul dans le repère de l’e - quadrupôle. Perturbations Sous densité Sur densité Produit du mode E Polarisation Lauranne Fauvet 28/06/2007 TBETBE ►Perturbations scalaires ►Perturbations tensorielles Passage d’une onde gravitationnelle. Génère des modes E et B (Hu et al (1997)) (Zaldarriaga et al (1998)) Décomposition en harmoniques sphériques Décomposition en harmoniques sphériques spinnées 38

The Planck mission φ = φ L + f NL φ L 2 φ~ : gaussian, linear curvature perturbation on the matter dominating era [Salopek & Bond, 1990] f NL ~ 0.05 canonical inflation [Maldacena,2003 ; Acquaviva et al, 2003] f NL ~ higher order derivatives (biblio … ) f NL > 10 curvaton models [Lyth, Ungarelly et Wands, 2003] f NL ~ 100 : ghost inflation [Arkani-Hamed et al, 2004] … 39

40

41 r ~ 0.1 r ~ 0.01 C l TT C l TE C l EE C l BB [Zaldarriaga, 2002] the CMB Stokes parameters I,Q & U L. Fauvet

42 L. Fauvet the CMB: polarization Cosmology Workshop09, 12/11/2009 [Kosowsky, 1992] QU

43 non regular field at all scales same intensity as the regular component Kolmogorov spectrum [Han et al, 2006] 3D gaussian simulation with used a power spectrum A turb (dimensionless) : normalisation of the turbulent component B turb = (8μ 0 E B ) 1/2 with μ 0 = 4π H.m -1 3D model of the galaxy 1/k > 15 kpc : C = (9.5 ± 0.3 )* erg.cm -3.kpc α = -5/3 0.5 < 1/k < 15 kpc : C = (6.8± 0.3 )* erg.cm -3.kpc α = [Han et al, 2006] turbulente component

44 the CMB L. Fauvet Cosmology Workshop09, 12/11/2009 I

45 Cosmological parameters tensor-scalar ratio constraint by WMAP 5 and 3 years (at 95% et 68% C.L)

The Planck mission Simplified analysis (isotropic noise, using 70, 100, 143 and 217 GHz Planck data) : r=0.05 and uper limit at r = %C.L. for lower values 46 Upper limit of r≤ 0.05 if no primordial tensor mode Detect tensor mode if r ~ 0.1 G.Efstathiou... L. Fauvet Cosmology Workshop09, 12/11/2009

47 slow-roll inflation

48

[“Planck bluebook”, the Planck collaboration, 2005] The Planck mission: cooling chain 1.5 m telescope LFI HEMTS to 18K HFI bolometers to 0.1K 40K : radiative cooling 18K : H 2 sorption cooler (J-T) 4K : He mechanical pump (J-T) 1.6K : J-T expansion 0.1K : 3 He/ 4 He dilution 49 L. Fauvet Cosmology Workshop09, 12/11/2009