Modeling of the galactic polarized foreground emissions to minimize the contamination of the BB modes L. Fauvet, J.F. Macías-Pérez, F.-X. Désert 1.

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Observational constraints and cosmological parameters
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
CMB and cluster lensing Antony Lewis Institute of Astronomy, Cambridge Lewis & Challinor, Phys. Rept : astro-ph/
CMB Constraints on Cosmology Antony Lewis Institute of Astronomy, Cambridge
Lecture 2 Temperature anisotropies cont: what we can learn CMB polarisation: what it is and what we can learn.
QUIET Q/U Imaging ExperimenT Osamu Tajima (KEK) QUIET collaboration 1.
Preparation to the CMB Planck analysis: contamination due to the polarized galactic emission L. Fauvet, J.F. Macías-Pérez 1.
Planck 2013 results, implications for cosmology
Cosmic Microwave Background, Foregrounds and Component Separation What are foregrounds and how to deal with them in CMB data analysis Carlo Baccigalupi,
Foreground cleaning in CMB experiments Carlo Baccigalupi, SISSA, Trieste.
Cleaned Three-Year WMAP CMB Map: Magnitude of the Quadrupole and Alignment of Large Scale Modes Chan-Gyung Park, Changbom Park (KIAS), J. Richard Gott.
Cambridge CMB meeting 20 th July 2009 CMB B-modes: Foregrounds Paddy Leahy, Clive Dickinson, Mike Preece, Mike Peel (Manchester)
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
Photo: Keith Vanderlinde Detection of tensor B-mode polarization : Why would we need any more data?
Distinguishing Primordial B Modes from Lensing Section 5: F. Finelli, A. Lewis, M. Bucher, A. Balbi, V. Aquaviva, J. Diego, F. Stivoli Abstract:” If the.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Contamination of the CMB Planck data by galactic polarized emissions L. Fauvet, J.F. Macίas-Pérez.
Curvature Perturbations from a Non-minimally Coupled Vector Boson Field Mindaugas Karčiauskas work done with Konstantinos Dimopoulos Mindaugas Karčiauskas.
Component Separation of Polarized Data Application to PLANCK Jonathan Aumont J-F. Macías-Pérez, M. Tristram, D. Santos
T.G.Arshakian MPI für Radioastronomie (Bonn) Exploring the weak magnetic fields with LOFAR.
N. Ponthieu Polarization workshop, IAS, Orsay, 09/15/ N. Ponthieu (IAS) The conquest of sky polarization The upper limits era First detections Prospects.
CMB polarisation results from QUIET
SLAC, May 12th, 2004J.L. Puget PLANCK J.L. Puget Institut d'Astrophysique Spatiale Orsay.
Separating Cosmological B-Modes with FastICA Stivoli F. Baccigalupi C. Maino D. Stompor R. Orsay – 15/09/2005.
Modelling radio galaxies in simulations: CMB contaminants and SKA / Meerkat sources by Fidy A. RAMAMONJISOA MSc Project University of the Western Cape.
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
The Implication of BICEP2 : Alternative Interpretations on its results Seokcheon Lee SNU Seminar Apr. 10 th
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
CMB & Foreground Polarisation CMB 2003 Workshop, Minneapolis Carlo Baccigalupi, SISSA/ISAS.
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Probing fundamental physics with CMB B-modes Cora Dvorkin IAS Harvard (Hubble fellow) Status and Future of Inflationary Theory workshop August 2014, KICP.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Non-Gaussianity, spectral index and tensor modes in mixed inflaton and curvaton models Teruaki Suyama (Institute for Cosmic Ray Research) In collaboration.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
LHC conference - Isfahan
Joint analysis of Archeops and WMAP observations of the CMB G. Patanchon (University of British Columbia) for the Archeops collaboration.
Galactic Radioemission – a problem for precision cosmology ? Absolute Temperatures at Short CM-Waves with a Lunar Radio Telescope Wolfgang Reich Max-Planck-Institut.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Planck/HFI uses Jet Propulsion Laboratory (JPL) spider-web and polarization-sensitive bolometers cooled to 0.1 K to map the sky in 6 frequency bands from.
SUNYAEV-ZELDOVICH EFFECT. OUTLINE  What is SZE  What Can we learn from SZE  SZE Cluster Surveys  Experimental Issues  SZ Surveys are coming: What.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Cosmic magnetism ( KSP of the SKA)‏ understand the origin and evolution of magnetism in the Galaxy, extragalactic objects, clusters and inter-galactic/-cluster.
Reionisation and the cross-correlation between the CMB and the 21-cm line fluctuations Hiroyuki Tashiro IAS, ORSAY 43rd Rencontres de Moriond La Thuile,
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Planck Report on the status of the mission Carlo Baccigalupi, SISSA.
Blind Component Separation for Polarized Obseravations of the CMB Jonathan Aumont, Juan-Francisco Macias-Perez Rencontres de Moriond 2006 La.
The Cosmic Microwave Background
WMAP Cosmology Courtesy of NASA/WMAP Science Team map.gsfc.nasa.gov.
Basics of the Cosmic Microwave Background Eiichiro Komatsu (UT Austin) Lecture at Max Planck Institute August 14, 2007.
CMB, lensing, and non-Gaussianities
150GHz 100GHz 220GHz Galactic Latitude (Deg) A Millimeter Wave Galactic Plane Survey with the BICEP Polarimeter Evan Bierman (U.C. San Diego) and C. Darren.
The Planck Satellite Matthew Trimble 10/1/12. Useful Physics Observing at a redshift = looking at light from a very distant object that was emitted a.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Cheng Zhao Supervisor: Charling Tao
BICEP2 Results & Its Implication on inflation models and Cosmology Seokcheon Lee 48 th Workshop on Gravitation & NR May. 16 th
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
CMB physics Zong-Kuan Guo 《现代宇宙学》
Topics on Dark Matter Annihilation
Towards the first detection using SPT polarisation
Testing Primordial non-Gaussianities in CMB Anisotropies
Dust-polarization maps and interstellar turbulence
Cosmological constraints from μE cross correlations
12th Marcel Grossman Meeting,
A Measurement of CMB Polarization with QUaD
Precision cosmology, status and perspectives
宇宙磁场的起源 郭宗宽 中山大学宇宙学研讨班
Separating E and B types of CMB polarization on an incomplete sky Wen Zhao Based on: WZ and D.Baskaran, Phys.Rev.D (2010) 2019/9/3.
LFI systematics and impact on science
Presentation transcript:

Modeling of the galactic polarized foreground emissions to minimize the contamination of the BB modes L. Fauvet, J.F. Macías-Pérez, F.-X. Désert 1

2 L. Fauvet Workshop FPP, 08/10/2010 ¤ Polarized foregrounds ¤ 3D modeling of the galaxy ¤ Contamination of the CMB data ¤ Constraint on the galactic magnetic field with FPP Summary

3 dust emission B ω relativistic electron synchrotron emission dust grain starlight polarization synchrotron emission (408 MHz) [Haslam et al, 1982] thermal dust emission (353 GHz) [Finkbeiner et al, 1999] L. Fauvet Workshop FPP, 08/10/2010 Galactic polarized foregrounds

4 physical model of polarized foreground emissions depends on: the shape of the galactic magnetic field : regular component : MLS or ASS free parameter : pitch angle [Han et al, 2006] non regular component [Han et al, 2004] free parameter: A turb the distribution of relativistic electrons, free parameter: h r [Page et al, 2007; Sun et al, 2008] the distribution of dust grains [Page et al, 2007; Paladini et al, 2007] [Han et al, 2006] L. Fauvet Workshop FPP, 08/10/2010 3D model of the Galaxy

5 integrating along the line of sight polarization fraction related to the cosmic ray energy dimension slope s : p s = 0.75 idem for thermal dust ◦ thermal dust emission p d : the polarization fraction = 0.1 [Ponthieu et al, 2005] with: ◦ synchrotron emission extrapolation at various μ : β s extrapolation at various μ : β d L. Fauvet Workshop FPP, 08/10/2010 3D model of the Galaxy

6 408 MHz all-sky continuum survey [Haslam et al, 1982] 5 years of WMAP data ARCHEOPS data at 353 GHz likelihood maximisation : L. Fauvet [Hinshaw et al, 2009] [Benoit et al, 2003] Workshop FPP, 08/10/2010 3D model of the Galaxy : fit

7 + :WMAP 5 years data green to red : synchrotron emission including MLS model of magnetic field for p = -70, -30 and 50 deg L. Fauvet Workshop FPP, 08/10/2010 3D model of the Galaxy : fit UQ 23 GHz

8 + : ARCHEOPS data green to red : model of thermal dust emission including MLS model of magnetic field for p = -70, -30 and 50 deg L. Fauvet Workshop FPP, 08/10/2010 3D model of the Galaxy : fit QU 353 GHz

9 synchrotron emission A turb < 0.25 B reg p = - 30 ± 20 deg h r < 15 kpc β s = -3.3 ± 0.1 dust thermal emission A turb < 0.25 B reg p = - 20 ± 10 deg MLS field L. Fauvet Workshop FPP, 08/10/2010 3D model of the Galaxy : best fit model constraint on the orientation of the regular component of the galactic magnetic field. turbulent component of the magnetic field not necessary consistent constraints for the two emissions [LF, Macías-Pérez et al, A&A in press, astro-ph: ]

10 I WMAP Q WMAP U WMAP I SYNC Q SYNC U SYNC 23 GHz L. Fauvet Workshop FPP, 08/10/2010 3D model of the Galaxy : best fit model

L. Fauvet TTEEBB TETBEB GHz Workshop FPP, 08/10/2010 3D model of the Galaxy : best fit model

12 I ARCH Q ARCH U ARCH I DUST Q DUST U DUST 353 GHz L. Fauvet Workshop FPP, 08/10/2010 3D model of the Galaxy : best fit model

TTEEBB TETBEB L. Fauvet GHz Workshop FPP, 08/10/2010 3D model of the Galaxy : best fit model

14 Contamination of the CMB data Workshop FPP, 08/10/2010 L. Fauvet

15 from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : CMB simulations, r=0.1, ΛCDM [Komatsu et al, 2010] TETBEB EEBBTT 100 GHz L. Fauvet Workshop FPP, 08/10/2010 Contamination of the CMB data : galactic cut

16 model of galactic foreground polarized emissions for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.1 BB modes L. Fauvet Workshop FPP, 08/10/ GHz 217 GHz 143 GHz 70 GHz Contamination of the CMB data : galactic cut

17 N°2 N°1P06 N°1 : cut for Q 353GHz > 50 μK RJ or I 353GHz > 500 μK RJ (f sky = 63 %) N°2 : cut for Q 353GHz > 100 μK RJ or I 353GHz > 1000 μK RJ (f sky = 41 %) N°3 : cut for Q 353GHz > 300 μK RJ or I 353GHz > 3000 μK RJ (f sky = 27 %) P06 : using WMAP data at 23 and 94 GHz [Gold et al, 2010] Workshop FPP, 08/10/2010 L. Fauvet N°3 Contamination of the CMB data : masks

18 Workshop FPP, 08/10/2010 TTEEBB TETBEB L. Fauvet 100 GHz from black to blue : model of galactic emission using masks N°1, N°2, N°3 Orange : using P06 mask red : simulation of CMB, r=0.1, ΛCDM [Komastu et al, 2010] Contamination of the CMB data : masks

19 Contamination of the BB modes We hope a residual foreground emissions contamination negligible in the error budget after component separation with (C l res,BB ) 2 << S var (C l BB ) 2 C l res,BB / C l fore, BB (%) Expected residu after component separation < 3% 100 GHz Workshop FPP, 08/10/2010 L. Fauvet

20 Workshop FPP, 08/10/2010 L. Fauvet sensitivity control of the systematics accurate measurement of the redondancy galactic magnetic field strong constraints expected on the orientation of the field lines (error on p < 5 deg) contribution of the turbulent magnetic field constraint ( error < 0.1 μG). strong constraints on the matter distribution σ Planck = 65μK /arcmin [Planck Bluebook 2004] σ FPP = 5μK /arcmin [FPP proposal] ~ 13 times better with FPP Measurement of the galactic magnetic field with FPP [LF, Macías-Pérez et al, submitted to A&A]

21 Conclusions L. Fauvet Workshop FPP, 08/10/2010 coherent models for the diffuse polarized galactic emissions. useful to estimate foreground contamination to the CMB polarization. with FPP we could improve our knowledge of the magnetic field and the matter content of the Galaxy.

22 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 TETBEB EEBBTT 143 GHz L. Fauvet

23 Expected constraints with Planck and B-Pol L. Fauvet strong constraints expected on p, β s and β d no constraints expected on h e r and h d r adding WMAP data improve the constraints σ Planck = 65μK σ B-Pol = 5μK 13 times better using B-Pol data

24 3D model of the Galaxy [Han et al, 2006] feature of the galactic magnetic field : regular component [Han et al, 2006] turbulent component [Han et al, 2004] matter distribution [Page et al, 2007] distribution of relativistic electrons: distribution of dust grains

25 Expected constraints on the galactic magnetic field with Planck and FPP L. Fauvet [LF, Macías-Pérez et al, to be submitted to A&A]

26 simulations of Q and U map of Planck and WMAP 8-years data for all polarized channels : 4 kind of simulations : -> with or without turbulent component of the magnetic fields (A turb = 0.25) -> with spectral index spatialy constants (β s = -3.0, β d = 1.4) or variables noise : gaussian random simulations [Planck Bluebook, 2004] CMB : model ΛCDM [Komatsu et al, 2010] -3.5 < β s <-2.8 β d = 1.4 ± 0.3 [Macías-Pérez, LF et al, in preparation] L. Fauvet [Gold et al, 2010] expected constraints with Planck and BPol

27 3D model of the Galaxy : optimisation WMAP 5 years data + synchrotron emission (from green to red) (MLS model of magnetic field and exponnential distribution of relativistic electrons) L. Fauvet QU 23 GHz

28 galactic profiles for various values of the latitudes the ARCHEOPS data and our model of thermal dust emission (MLS model of magnetic field and exponential distribution of dust grains) L. Fauvet 3D model of the Galaxy : optimisation 353 GHz UQ

29 QU 353 GHz L. Fauvet MLS field for different values of p

Planck : ESA mission dedicated to the CMB anisotropies measurement large frequency range : LFI : 30, 44, 70 GHz HFI : 100, 143, 217, 353, 545, 857 GHz full-sky coverage and angular resolution of 5’ sensitivity limited by the ability to subtract astrophysical foregrounds ~ K Ultimate measurement of the CMB temperature anisotropies Best possible measurement of polarization with currently available technologies The PLANCK mission L. Fauvet 30 PCHE meeting, 08/06/2010

31 polarized foregrounds [Gold et al, 2010] I QU L. Fauvet WMAP 7-years, Ka band PCHE meeting, 08/06/2010

32 polarized foregrounds instrumental noise dust synchrotron free-free galaxies SZ (cinetic) SZ (thermal) CMB synchrotron dominates at ν < 70 GHz thermal dust dominates at ν > 70 GHz L. Fauvet PCHE meeting, 08/06/2010

33 expected CMB measurements with Planck EE TT [PLANCK Bluebook,‚the PLANCK collaboration, 2005] L. Fauvet

34 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.1 BB L. Fauvet 100 GHz 217 GHz 143 GHz 70 GHz

35

36 MLS ASS [Sun et al, 2008]

37 expected constraints with Planck

38

GHz

40 non regular field at all scales same intensity as the regular component Kolmogorov spectrum [Han et al, 2006] 3D gaussian simulation with used a power spectrum A turb (dimensionless) : normalisation of the turbulent component B turb = (8μ 0 E B ) 1/2 with μ 0 = 4π H.m -1 3D model of the galaxy 1/k > 15 kpc : C = (9.5 ± 0.3 )* erg.cm -3.kpc α = -5/3 0.5 < 1/k < 15 kpc : C = (6.8± 0.3 )* erg.cm -3.kpc α = [Han et al, 2006] turbulente component

41 Haslam data, MLS field for different values of A turb L. Fauvet 3D model of the Galaxy: optimisation WG7 meeting, 14/07/2010 I

42 Best fit parameters WMAP 5yrs / synchrotron BSS field, at 23 GHz A turb p(deg)hrhr βsβs A turb < 0.25, p = - 20 ± 10 deg h r < 15kpc, β s = -3.4 ± 0.1

43 L. Fauvet Cosmology Workshop09, 12/11/2009 impact on the CMB data red : synchrotron emission model blue : thermal dust emission model black: 3 years ofWMAP and ARCHEOPS data EE BB

launched the 14 th of May 2009 from Kourou travelled to L2 point and cooling until end of June 2009 final checks until 15 th of August NOW : 14 months of operations for 2 all-sky surveys 2012 : First public data release by ESA ≥ 2013 : Potential second data surveys (He) The PLANCK schedule 44 L. Fauvet First light of Planck [Bouchet, 2009] Rencontres de Moriond, 2010

The Planck mission : scientific objectifs □ Primary anisotropies: cosmological parameters physics of the Early Universe non-gaussianity □ Secondary anisotropies: ISW gravitational lensing reionisation galaxy clusters □ Extragalactic sources : radio sources dusty galaxies and their contaminants □ Galactic & Solar systems : galactic magnetic field & ISM planets and asteroides … [“Planck bluebook”, the Planck collaboration, 2005] 45 L. Fauvet

Formation de la polarisation Diffusion Thomson des photons sur les électrons: Section efficace Anisotropies quadrupolaires responsables de la polarisation du CMB Polarisation Lauranne Fauvet 28/06/2007 (Kosowsky et al (1994))    .| d d 46

47 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 BB L. Fauvet Rencontres de Moriond, GHz 217 GHz 143 GHz 70 GHz

48 contamination of the CMB data from blue to black: model of galactic emission for |b| > 15, 30, 40 deg red : simulation of CMB, r=0.3 TETBEB EEBBTT 100 GHz L. Fauvet Rencontres de Moriond, 2010

Paramètres de Stokes I : intensité Q,U : polarisation linéaire (dépendants du choix du référentiel). V : polarisation circulaire (absente du CMB). Gradient de vitesse non nul dans le repère de l’e - quadrupôle. Perturbations Sous densité Sur densité Produit du mode E Polarisation Lauranne Fauvet 28/06/2007 TBETBE ► Perturbations scalaires ► Perturbations tensorielles Passage d’une onde gravitationnelle. Génère des modes E et B (Hu et al (1997)) (Zaldarriaga et al (1998)) Décomposition en harmoniques sphériques Décomposition en harmoniques sphériques spinnées 49

The Planck mission φ = φ L + f NL φ L 2 φ~ : gaussian, linear curvature perturbation on the matter dominating era [Salopek & Bond, 1990] f NL ~ 0.05 canonical inflation [Maldacena,2003 ; Acquaviva et al, 2003] f NL ~ higher order derivatives (biblio … ) f NL > 10 curvaton models [Lyth, Ungarelly et Wands, 2003] f NL ~ 100 : ghost inflation [Arkani-Hamed et al, 2004] … 50

51

52 r ~ 0.1 r ~ 0.01 C l TT C l TE C l EE C l BB [Zaldarriaga, 2002] the CMB Stokes parameters I,Q & U L. Fauvet

53 L. Fauvet the CMB: polarization Cosmology Workshop09, 12/11/2009 [Kosowsky, 1992] QU

54 non regular field at all scales same intensity as the regular component Kolmogorov spectrum [Han et al, 2006] 3D gaussian simulation with used a power spectrum A turb (dimensionless) : normalisation of the turbulent component B turb = (8μ 0 E B ) 1/2 with μ 0 = 4π H.m -1 3D model of the galaxy 1/k > 15 kpc : C = (9.5 ± 0.3 )* erg.cm -3.kpc α = -5/3 0.5 < 1/k < 15 kpc : C = (6.8± 0.3 )* erg.cm -3.kpc α = [Han et al, 2006] turbulente component

55 the CMB L. Fauvet Cosmology Workshop09, 12/11/2009 I

56 Cosmological parameters tensor-scalar ratio constraint by WMAP 5 and 3 years (at 95% et 68% C.L)

The Planck mission Simplified analysis (isotropic noise, using 70, 100, 143 and 217 GHz Planck data) : r=0.05 and uper limit at r = %C.L. for lower values 57 Upper limit of r≤ 0.05 if no primordial tensor mode Detect tensor mode if r ~ 0.1 G.Efstathiou... L. Fauvet Cosmology Workshop09, 12/11/2009

58 slow-roll inflation

59

[“Planck bluebook”, the Planck collaboration, 2005] The Planck mission: cooling chain 1.5 m telescope LFI HEMTS to 18K HFI bolometers to 0.1K 40K : radiative cooling 18K : H 2 sorption cooler (J-T) 4K : He mechanical pump (J-T) 1.6K : J-T expansion 0.1K : 3 He/ 4 He dilution 60 L. Fauvet Cosmology Workshop09, 12/11/2009