Optical Properties of Condensed Matters 祝 世 宁. 引言 : 光学过程的分类,光学系数,复折射率与复介电常数,光学材料 ( 绝缘晶体,半导体, 玻璃,金属,高分子材料等 ) ,凝聚态物质光学性质的特征 ( 对称性,电子能带,晶 格振动,态密度,局域态和集体激发等.

Slides:



Advertisements
Similar presentations
第十二章 常微分方程 返回. 一、主要内容 基本概念 一阶方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程 类 型 1. 直接积分法 2. 可分离变量 3. 齐次方程 4. 可化为齐次 方程 5. 全微分方程 6. 线性方程.
Advertisements

C19cof01 Optical Properties Refraction & Dispersion.
平衡态电化学 化学电池 浓差电池 电极过程动力学.
X 射线荧光光谱法 许晨烨  1.X 射线荧光光谱法简介 1.X 射线荧光光谱法简介  2. 方法和原理 2. 方法和原理  3. 仪器结构和原理 3. 仪器结构和原理.
两极异步电动机示意图 (图中气隙磁场形象地 用 N 、 S 来表示) 定子接三相电源上,绕组中流过三相对称电流,气 隙中建立基波旋转磁动势,产生基波旋转磁场,转速 为同步速 : 三相异步电动机的简单工作原理 电动机运行时的基本电磁过程: 这个同步速的气隙磁场切割 转子绕组,产生感应电动势并在 转子绕组中产生相应的电流;
裂解气相色谱技术与应用 裂解气相色谱技术与应用 裂解气相色谱技术与应用 application and technology of pyrolysis gas chromatograph 裂解气相色谱技术与应用 张潇.
Graphene Double Quantum Dot Transport Property Zhan Su Jan. 12, 2011.
理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
三、电化学现象普遍存在 (a)  i    i  i 为带电荷粒子  相间自发转移 (b) 相界面存在过剩电荷  界面电位差 (c) 自然界普遍存在水  电解质溶液.
超灵敏微位移 传感器 基于单电子晶体管的 报告人 : 安雪华 02 级 20 系. 主要内容  研究热点  单电子晶体管的优良性质  以单电子晶体管为基础设计的高灵敏度微位 移传感器  结果与讨论  引文.
单分子探测技术 报 告 人: 韩 洁 报 告 人: 韩 洁. 单分子探测技术产生的原因 单分子探测的主要基本技术 单分子荧光检测的物理基础 单分子荧光检测技术应用 主要内容.
11-8. 电解质溶液的 活度和活度系数 电解质是有能力形成可以 自由移动的离子的物质. 理想溶液体系 分子间相互作用 实际溶液体系 ( 非电解质 ) 部分电离学说 (1878 年 ) 弱电解质溶液体系 离子间相互作用 (1923 年 ) 强电解质溶液体系.
1 第七章 灼热桥丝式电雷管. 1. 热平衡方程 C ℃ 冷却时间 2. 桥丝加热过程 ⑴忽略化学反应惰性方程 ; (2) 为简化集总参数 C, (3) 热损失有两部分 : 轴向与径向 ; 第一种情况 在大功率下忽略热损失, 第二种情况 在输入低功率下 输入 = 散失热量 I I = 3 电容放电时的桥丝温度和发火能量(电容放电下,
HK, May, 2010 Exciton-plasmom interaction and enhanced energy transfer in active plasmonic nanosystem Qu-Quan WANG ( 王取泉 ) Wuhan University.
Chap.8 Basics of Modern Optics 主讲人:尹国盛 教授 河南大学物理与信息光电子学院.
导体  电子导体  R   离子导体 L  mm      ,,, m m 
第二章:X射线与物质的相互作用.
导体  电子导体  R   离子导体 L  mm      ,,, m m 
Chapter 9 多原子的半经验方法 1. π- electron approximation 2. The free-electron MO method 3. The Huckel MO method 4. Conjugated Chain Molecules 5. Monocyclic Conjugated.
Fiber-Optic Communications James N. Downing. Chapter 2 Principles of Optics.
平衡态电化学 化学电池 浓差电池 电极过程动力学. Electrode Kinetics 极 化 Polarization.
Dr. Jie ZouPHY Chapter 43 Molecules and Solids.
电荷传递之处.
GXQ 分析化学 学年.
流态化 概述 一、固体流态化:颗粒物料与流动的流体接触,使颗粒物料呈类 似于流体的状态。 二、流态化技术的应用:流化催化裂化、吸附、干燥、冷凝等。 三、流态化技术的优点:连续化操作;温度均匀,易调节和维持; 气、固间传质、传热速率高等。 四、本章基本内容: 1. 流态化基本概念 2. 流体力学特性 3.
第十一章 光学分析法导论.
11-13 电极电势 电池电动势 ( 为各类界面电势差之和 ) E. 平衡时电化学势  i sol + z i e 0  sol =  i M + z i e 0  M.
量子化学 第四章 角动量与自旋 (Angular momentum and spin) 4.1 动量算符 4.2 角动量阶梯算符方法
Chapter 11 Magnetic Field in the Medium (Magnetic Property of Matter)
Chap.6 Absorption、 Scattering and Dispersion of Light
2.血管的神经支配 缩血管神经纤维 舒血管神经纤维 交感舒血管神经纤维 副交感舒血管神经纤维 脊髓背根舒血管神经纤维 血管活性肠肽神经元.
1 Chap.6 Absorption 、 Scattering and Dispersion of Light 主讲人:尹国盛 教授 河南大学物理与信息光电子学院.
第2章 激光器的工作原理 回顾 ——产生激光的三个必要条件: 1. 工作物质 2. 激励能源 3. 光学谐振腔
第一节 相图基本知识 1 三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
水晶水晶 金刚石 雪花 不同类型的晶体. 晶体 : 通过结晶形成有规则的几何外形的固体 原因:晶体内部构成微粒有规则排列的结果。
1/108 随机信号分析. 2/116 第 2 章 随机信号 3/ 定义与基本特性 2.2 典型信号举例 2.3 一般特性与基本运算 2.4 多维高斯分布与高斯信号 2.5 独立信号 目 录.
导体  电子导体  R   L  i 离子导体  ( 平衡 ) mm   .
可逆电动势 可逆电动势必须满足的两个条件 1. 电池中的化学反应可向 正反两方向进行 2. 电池在十分接近平衡 状态下工作 Reversible Electromotive Force (emf)
平衡态电化学 化学电池 浓差电池. 平衡态电化学 膜电势 化学电池浓差电池 电极过程动力学 Electrode Kinetics 极 化 Polarization.
量 子 化 学 量 子 化 学 厦门大学. 参考书目 1 Quantum Chemistry, Ira N. Levine.Fifth Edition, 《量子化学》 - 基本原理和从头计算法 ( 上,中,下 ) 徐光宪、黎乐民,科学出版社, 《量子化学基础》,刘若庄等编,科学出版社,
编译原理总结. 基本概念  编译器 、解释器  编译过程 、各过程的功能  编译器在程序执行过程中的作用  编译器的实现途径.
信息科学部 “ 十一五 ” 计划期间 优先资助领域 信息科学部 秦玉文 2006 年 2 月 24 日.
第九章其他特种加工 1 化学加工( Chemical Machining , CHM ),利 用酸、碱、盐等化学溶液 对金属产生化学反应,使 金属腐蚀溶解,改变工件 尺寸和形状的加工方法。 应用:化学铣削,光化学腐 蚀;化学抛光和化学镀膜 等。
§8-3 电 场 强 度 一、电场 近代物理证明:电场是一种物质。它具有能量、 动量、质量。 电荷 电场 电荷 电场对外的表现 : 1) 电场中的电荷要受到电场力的作用 ; 2) 电场力可移动电荷作功.
第九章 固态相变 第九章 固态相变. 第一节 概 述 一 固态相变的特点 界面能增加 界面能增加 1 相变阻力大 额外弹性应变能:比体积差 固态相变 扩散困难(新、旧相化学成分不同时) 困难 扩散困难(新、旧相化学成分不同时) 困难.
古代机械探胜 古代机械探胜 —— 之水车篇. 辉煌的历史 候风地动仪 候风地动仪指南车 备物致用,立成器以为天下利,莫大乎圣人。 —— 易经.
Service d’Électromagnétisme et de Télécommunications 1 1 Attenuation in optical fibres 5 ème Electricité - Télécommunications II Marc Wuilpart Réseaux.
氧 族 元 素 第一课时. 氧族元素 包含元素 氧族元素包括 氧 ( 8 O) 、硫 ( 16 S) 、硒 ( Se) 、碲 ( Te) 、钋 ( Po) 等 氧 ( 8 O) 、硫 ( 16 S) 、硒 ( Se) 、碲 ( Te) 、钋 ( Po) 等 氧族元素。 它们的最外层电子、化学性质相似统称为.
Classical propagation 2.1 Propagation of light in a dense optical medium 2.2 The dipole oscillator model 2.3 Dispersion 3.4 Optical anisotropy: birefringence.
光的干涉和繞射實驗. 雙狹縫干涉 d d Diffraction≡The bending of a wave around the edges of an obstacle.
PHYSICS DEPARTMENT.
实验一、光学显微镜使用 及显微摄影技术.
高温固相法制备高效 YAG 荧 光粉及性能表征 实验指导书 2013 年 6 月 4 日 材料科学与工程实验教学中心 Experimental Teaching Center for Materials Science and Engineering.
Chapters: 3and 4. THREE MAIN LIGHT MATTER INTERRACTION Absorption: converts radiative energy into internal energy Emission: converts internal energy into.
河南济源市沁园中学 前进中的沁园中学欢迎您 ! 温故知新: 1 、什么是原子? 2 、原子是怎样构成的? 3 、原子带电吗?为什么?
Chapter 1 Introduction 1.1 Classification of optical processes Reflection Propagation Transmission Optical medium refractive index n( ) = c / v ( )
完成任务:制作一音频功放 目 录 模块一 常用元器件 模块二 分立元件小信号放大 模块四 低频功率放大器 模块三 集成放大器 模块五 直流稳压电源 模块六 信号产生与处理.
Chapter 3 & 4 Beam Optics + Fourier Optics 1. Comments  第二章的延续  非平面波  主要沿 z 方向传播  在横截面( xy )里,电磁场为非均匀分布.
Cherenkov radiation 真空中匀速直线运动带电粒子不辐射? 带电粒子在介质中运动产生诱导电流,当粒子速度超过介质内光速时, 激发次波与原粒子电磁场干涉,可以形成辐射场。 方向性好 : Cherenkov1934,Frank &Tam Nobel prize.
胶体半导体量子点的光电性质研究 东南大学电子工程系 北京, 2009 年 5 月 张家雨,崔一平.
Lecture 21 Optical properties. Incoming lightReflected light Transmitted light Absorbed light Heat Light impinging onto an object (material) can be absorbed,
学生:梁辰,赵童,谢永 指导教师: 余征跃.  空间桁架结构是柔性结构的典型代表之一  结构特点:质量轻、承载能力强、柔性大、 固有频率低、模态密集、结构阻尼小、 轻易于在轨拆装与展开等。 航天工程应用:运载火箭仪器舱、卫星天线塔、 航天器接口支架、一箭多星支架等, 另外桁架结构可以作为未来空间系统的主体结构。
LOSSES IN FIBER BY:Sagar Adroja.
UV SPECTROSCOPY Absorption spectra.
八. 真核生物的转录 ㈠ 特点 ① 转录单元为单顺反子( single cistron ),每 个蛋白质基因都有自身的启动子,从而造成在功能 上相关而又独立的基因之间具有更复杂的调控系统。 ② RNA 聚合酶的高度分工,由 3 种不同的酶催化转 录不同的 RNA 。 ③ 需要基本转录因子与转录调控因子的参与,这.
霍尔效应及其应用 汪礼胜 武汉理工大学物理实验中心. 【实验目的】 1 、研究霍尔效应的基本特性 ( 1 )了解霍尔效应实验原理以及有关霍尔器件 对材料要求的知识; ( 2 )测绘霍尔元件的 和 曲线; ( 3 )确定霍尔元件的导电类型,测量其霍尔系 数、载流子浓度以及迁移率。 2 、应用霍尔效应测量磁场(选做)
§9. 恒定电流场 第一章 静电场 恒定电流场. 电流强度  电流:电荷的定向移动  正负电荷反方向运动产生的电磁效应相同 ( 霍尔效应 特例 ) 规定正电荷流动的方向为正方向  电流方向:正方向、反方向  电流强度 ( 电流 ) A 安培 标量 单位时间通过某一截面的电荷.
你知道多细胞动物 和人的生长发育是 从什么细胞开始的 吗 ? 受精卵 分化 肌肉细胞 上皮细胞 人体的各种细胞图.
Raman spectroscopy.
2 Classical propagation 2.2 The dipole oscillator model 2.3 Dispersion
Presentation transcript:

Optical Properties of Condensed Matters 祝 世 宁

引言 : 光学过程的分类,光学系数,复折射率与复介电常数,光学材料 ( 绝缘晶体,半导体, 玻璃,金属,高分子材料等 ) ,凝聚态物质光学性质的特征 ( 对称性,电子能带,晶 格振动,态密度,局域态和集体激发等 ) ,微观模型 光在凝聚态物质中传播的经典理论 : 光在稠密光学介质中的传播,偶极振子模型,色散理 论,光学各向异性 : 双折射 带间吸收 : 带间跃迁, 直接跃迁的跃迁几率,直接带隙半导体的带边吸收,间接带隙半导体 的带边吸收,带边以上的带间吸收,吸收谱的测量,光探测材料与器件 激子 : 激子的概念,自由激子,外场中的自由激子,高密度的自由激子,弗仑克尔激子 发光 : 固体中光的发射,带间发光,光致发光,电致发光 量子阱与量子点 : 量子限制结构,半导体量子阱的结构与制备,电子能级,光的吸收与激 发,量子限制斯塔克效应,光发射,量子阱子的带间跃迁, Bloch 振子,量子点 自由电子 : Plasma 反射率, 自由载流子电导,金属,掺杂半导体, Plasmon 高分子材料 : 高分子材料简介,共轭分子的电子态,高分子光谱,芳烃共轭聚合物,有机 光电子学 发光中心 : 电子 — 声子相互作用,色心,离子晶体中的顺磁杂质,固体激光器与放大器, 发光材料 声子 : 红外活性声子,极性晶体红外反射与吸收,极化激元,极化子,非弹性光散射,声 子寿命 非线性光学 : 非线性极化率张量,光学非线性的物理起源,二阶非线性效应,三阶非线性 效应 光子晶体和光学微腔 : 光子能带,光子晶体的构成,光学微腔,腔量子电动力学简介

Chapter 1 Introduction 1.1 Classification of optical processes Reflection Propagation Transmission Optical medium refractive index n( ) = c / v ( ) Snell ’ s law absorption ~ resonance luminescence ~ spontaneous emission elastic and Inelastic scattering nonlinear-optics Propagation

1.2 Optical coefficients Coefficient of reflection or reflectivity (R): R = reflected power / incident power Transmission or transmissivity (T): T = transmitted power / incident power R + T = 1 Refractive index (n): Absorption coefficient (  )  = - d I * d z / I (z); Beer’s law:  is strong function of frequency Luminescence The atom jumps to an excited state by absorption of a Photon, then relaxes to an intermediate state, before re- emitting a photon by spontaneous emission as it falls To the ground state. The photon emitted has a smaller energy than the absorbed photon. The reduction in the Photon energy is called the Stokes shift. Scattering Variation of n of the medium on a length scale smaller than the of the light N: the number of scattering centres / V;  S: scattering cross-section;  = N  S Rayleigh scattering :

1.3 The complex refractive index and dielectric constant Complex refractive index  : extinction coefficient Where Complex dielectric constant The relationship between the real and imaginary parts of two coefficients: For weakly absorbing medium,  is very small, The reflectivity (normal incidence) : In the transparent region of material :  is very small,  and  2 are negligible, one may consider only the real parts of n and  ; In the absorption region, one need to know both the real and imaginary parts of n and .

1.4 Optical materials 1.41 Crystalline insulators and semiconductors Transparency range, the index may be taken to be real with no imaginary component (approximately constant n=1.77) R = 0.077, hence T =(1-R) 2 =0.85 Phonon absorption or lattice absorption Due to absorption by bound electrons Fundamental absorption edge, is determined by the band gap. The optical properties of semiconductors are similar to those of insulators, expect that the electronic and phonic transitions occur at longer wavelengths. Its transparency range lies outside the visible spectrum, so it has a dark Metallic appearance.

1.4 Optical materials 1.41 Crystalline insulators and semiconductors Materials can take on new properties by controlled doping with optically active substance. Transmission spectrum of ruby (ruby Al 2 O 3 With 0.05% Cr 3+ ) compared to sapphire(pure Al 2 O 3 ). The thicknesses of the two crystals were 6.1 mm and 3.0 mm, respectively The principle of doping optically active atoms into colourless hosts is employed extensively in the crystals used for solid state lasers. A typical example is the ruby crystal. Rubies consist of Cr+3 ions doped into Al2O3. In the natural crystals, the Cr+3 ions are present as impurities, but in synthetic crystals, the dopants are deliberately introduced in controlled quantities during the crystal growth process.

1.4 Optical materials Glass Most types of glasses are made of silica (SiO 2 ) with other chemicals. Insulator, all the characteristic features crystalline insulators, the trans range from around 200 nm to beyond 2000 nm; Small absorption and scattering losses; n changes by less than 1% over the whole visible spectral region; Chemicals are commonly added to silica during the fusion process to alter the refractive index and transmission range; Stained glass and colour glass filter are made by adding semiconductors with gaps in visible spectral region.

1.4 Optical materials Metals Reflect infrared and visible, but transmit ultraviolet (ultraviolet transmission of metals); High reflectivity is caused by the interaction of the light with the free electrons in metal; There is a characteristic cut-off frequency called the plasma frequency. Reflectivity of silver from the infrared to the ultraviolet

The molecular materials are held together by the weak van de Waals bonds, whereas the molecules are held together by strong covalent bonds. The optical properties of materials are similar to those of the individual molecules; Saturated compounds: compounds which do not contain any free valence (all the electrons are tightly held in their bonds), and are transparent in the visible, absorb in the infrared and ultraviolet (insulator crystals); Conjugated molecules (bezene C 6 H 6 ): The electrons form large delocalized orbitals called  orbitals which spread out across the whole molecule, therefore are less tightly bound than the electrons in saturated molecules. The molecules with visible absorption also tend to emit strongly at visible frequencies (semiconductors); 1.4 Optical materials Molecular (large organic molecules) Materials Absorption spectrum of the polyfluorene-based polymers F8. Conjugated polymers such as F8 luminesce strongly When electrons are promoted into the excited states of the molecule. The lumi- nescence is Stokes shifted to lower energy compared to absorption, and typically occurs in the middle of the visible spectral region. The emission wavelength can be tuned by small alternation to the chemical structure of the molecular unit within the polymers. The property has been used to develop organic light emitting devices to cover the full visible spectral region.

What the difference is between condensed matter and atomic or molecular optical physics? Crystal symmetry * long range translational order Electronic bands, delocalized states, … … * point group symmetry Neumann’s principle The measurable property point group symmetry Any macroscopic physical property must have at least the symmetry of the crystal structure Optical anisotropy: birefringence, nonlinear optical coefficient … … 1.5 Characteristic optical physics in the condensed matter Crystal symmetry Electronic bands Vibronic bands The density of states Delocalized states and collective excitations

1.5.1 Crystal symmetry Optical anisotropy: Lifting of degeneracies: Degeneracy can be lifted by reduction of the symmetry 1.5 Characteristic optical physics in the condensed matter Splitting of the energy levels of a free atom by the crystal field effect determined by the symmetry class of the crystal. The splitting Is caused by the interaction of the orbitals of The atoms with the electric fields of the cry- stalline environment. Optical transition between these crystal-field spilt levels ofen occur in the visible region, and cause the material to have every interesting properties that are found in the free atoms.

1.5.2 Electronic bands 1.5 Characteristic optical physics in the condensed matter As the atoms are brought closer together to form the solid, their outer orbitals begin to overlap with each other. These overlapping orbitals interact strongly, and broad bands are formed. The electronic states within the bands are delocalized and possess the translational invariance of the crystal. Bloch’s theorem states that the wave functions: where u k (r ) is a function that has the periodicity of the lattice. Each electronic band has a different envelope function u k (r ) Vibronic bands The band arises from the coupling of discrete electronic state to a continuous spectrum of vibrational mode. This contrast with the electronic band that arises from interaction between electronic states of neighbouring atoms.

1.5.4 The density of states This is defined as: Number of states in the range E  ( E + d E) = g (E) d E. g(E) is work out in practice: g(E) = g(k)·dk / dE This can be evaluated from knowledge of the E-k relationship for electrons or phonons Delocalized states and collective excitations phonon: the collective excitation of lattice vibration; exciton: formed from delocalized electrons and holes in semiconductors; plasmon: formed from free electrons in metals and doped semiconductors; … … many optical effects related to these … … Microscopic models Classical : Treat both the medium and the light according to classical physics; Semiclassical: apply quantum mechanics to atoms, treat light as a classical electromagnetic wave; Fully quantum: both atoms and light are treated quantum mechanically. 1.5 Characteristic optical physics in the condensed matter

Exercises: 1.The complex refractive index of germanium at 400 nm is given by. Calculate for germanium at 400 nm: (a) the phase velocity of light, (b) the absorption coefficient, and ( c) the reflectivity. 2.Show that the optical density (O.D.) of a sample is related to its transmission T and reflectively R through: Hence explain how you would determine the optical density by making two transmission measurements, one at wavelength where the material absorbs, and the other at a wavelength ’ where the material is transparent.