08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 1 A.Kashchuk

Slides:



Advertisements
Similar presentations
Topic 8. Gamma Camera (II)
Advertisements

Poster Design & Printing by Genigraphics ® In the PANDA experiment, the Straw Tube Tracker (Fig. 1) designed for momentum analysis of charged.
General Characteristics of Gas Detectors
Geiger Counters. Higher Voltage As the voltage increases in a gas detector the ions collected increases. The proportional region ends. –Streamer mode.
Status of test beam data analysis … with emphasis on resistive coating studies Progress and questions 1Meeting at CEA Saclay, 25 Jan 2010Jörg Wotschack,
24-Apr-15S.Movchan Straw prototype beam test into the NA48 infrastructure 1 Goals: test of straw prototype wires positioning straw bending check grounding.
The Lightweight Straw Tube Tracker for PANDA Detector at GSI Andrey Sokolov *,1, James Ritman 1, Peter Wintz 1, Paola Gianotti 2, Dario Orecchini 2 1 Institut.
INSTITUT MAX VON LAUE - PAUL LANGEVIN Fast Real-time SANS Detectors Charge Division in Individual, 1-D Position- sensitive Gas Detectors Patrick Van Esch.
Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
Radiation Detectors / Particle Detectors
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
1 Gas processes in OTP straw  Questions: HV limit SQS mode Gas gain ??? Location- O:\Data\Osotr1\Presentation3.ppt and O:\Data\Osotr1\chargestudy.ps V.
1 VCI, Werner Riegler RPCs and Wire Chambers for the LHCb Muon System  Overview  Principles  Performance Comparison: Timing, Efficiency,
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
Proportional Counters
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
Mass Production of GEMs (Chicago/Purdue/3M) Aging of mass produced GEMS (Purdue) Operation of GEMS in Negative Ion Gases (Purdue/Temple/WSU) Towards mass.
Rate and Gain Measurements of the 1-m long GEM detector Aiwu Zhang EIC tracking R&D weekly meeting.
The Straw-Tube Tracker of the ZEUS Detector at HERA
Measurement of gas gain fluctuations M. Chefdeville, LAPP, Annecy TPC Jamboree, Orsay, 12/05/2009.
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
Construction and quality control of the end-cap Transition Radiation Tracker for the ATLAS experiment Vasiliki A. Mitsou CERN HEP 2003, April, Athens,
New Developments in Large Area THGEMs & APV Exercise INFN – Sezione di Trieste Carlos Alexandre Fernandes dos Santos 11/December/2014.
Straw spatial resolution (beam test 2007 and 2008) A.Zinchenko, S.Shkarovskiy.
PHENIX Drift Chamber operation principles Modified by Victor Riabov Focus meeting 01/06/04 Original by Sergey Butsyk Focus meeting 01/14/03.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Sheffield : R. Hollingworth, D. Tovey R.A.L. : R.Luscher Development of Micromegas charge readout for two phase Xenon based Dark Matter detectors Contents:
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Ionization Detectors Basic operation
The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit,
Digital primary electron counting: W, Fano Factor, Polya vs Exponential M. Chefdeville, NIKHEF, Amsterdam RD51, Paris, October 2008.
Preliminary results of a detailed study on the discharge probability for a triple-GEM detector at PSI G. Bencivenni, A. Cardini, P. de Simone, F. Murtas.
Anatoli Romaniouk TRT Introduction TRT in ATLAS p. 2-4TRT in ATLAS p. 2-4 TRT design p. 5-7TRT design p. 5-7 TRT operation principles p. 8-9TRT operation.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
PNPI R&D on based detector for MUCH central part (supported by INTAS ) E. Chernyshova, V.Evseev, V. Ivanov, A. Khanzadeev, B. Komkov, L.
Luca Spogli Università Roma Tre & INFN Roma Tre
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Wenxin Wang 105/04/2013. L: 4.7m  : 3.6m Design for an ILD TPC in progress: Each endplate: 80 modules with 8000 pads Spatial Resolution (in a B=3.5T.
2002 LHC days in Split Sandra Horvat 08 – 12 October, Ruđer Bošković Institute, Zagreb Max-Planck-Institute for Physics, Munich Potential is here...
Xe-based detectors: recent work at Coimbra C.A.N.Conde, A.D. Stauffer, T.H.V.T.Dias, F.P.Santos, F.I.G.M.Borges, L.M.N.Távora, R.M.C. da Silva, J.Barata,
Quality control for large volume production GEM detectors Christopher Armaingaud On behalf of the collaboration GEMs for CMS.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
The BoNuS Detector: A Radial Time Projection Chamber for tracking Spectator Protons Howard Fenker, Jefferson Lab This work was partially supported by DOE.
29-Feb-16S.Movchan Straw status1 Choose of FEE chip for NA62 straw detector Beam tests results 2007 and 2008 (Straw spatial resolution) Comparison FEE.
meeting, Oct. 1 st 2015 meeting, Oct. 1 st Gas Pixel: TRD + Tracker.
Study of gas mixture containing SF6 for the OPERA RPCs A.Paoloni, A. Mengucci (LNF)
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
Update on THGEM project for RICH application Elena Rocco University of Eastern Piedmont & INFN Torino On behalf of an Alessandria-CERN-Freiburg-Liberec-
Siena, May A.Tonazzo –Performance of ATLAS MDT chambers /1 Performance of BIL tracking chambers for the ATLAS muon spectrometer A.Baroncelli,
Outline Description of the experimental setup Aim of this work TDC spectra analysis Tracking method steps Autocalibration Single tube resolution Summary.
RPCs with Ar-CO2 mix G. Aielli; R.Cardarelli; A. Zerbini For the ATLAS ROMA2 group.
ESS Detector Group Seminar Edoardo Rossi 14th August 2015
R&D on Hadron Blind detector, recent results Issues addressed: - gain limits in CF 4 with heavily ionizing particles - operation.
A. Calcaterra, R. de Sangro, G. Felici, G. Finocchiaro, P. Patteri, M. Piccolo INFN LNF XIV SuperB General Meeting DCH-I parallel session LNF, 27 September.
Precision Drift Tube Detectors for High Counting Rates O. Kortner, H. Kroha, F. Legger, R. Richter Max-Planck-Institut für Physik, Munich, Germany A. Engl,
FWD Meeting, Torino, June 16th, News from Cracow on the forward tracking J. Smyrski Institute of Physics UJ Tests of CARIOCA and LUMICAL preamplifiers.
1 straw tube signal simulation A. Rotondi PANDA meeting, Stockolm 15 June 2010.
The drift chamber with a new type of straws for operation in vacuum
MDT second coordinate readout: status and perspectives
Activities on straw tube simulation
S.Movchan Straw prototype beam test into the NA48 infrastructure
From: A fast high-voltage switching multiwire proportional chamber
THGEM: Introduction to discussion on UV-detector parameters for RICH
PADI for straw tube readout and diamonds for MIPs and for high precision tracking beam test – Jülich, Feb Jerzy Pietraszko, Michael Träger, Mircea.
Ionization detectors ∆
Development of Gas Electron Multiplier Detectors for Muon Tomography
Pre-installation Tests of the LHCb Muon Chambers
Engineering Design Review
Gain measurements of Chromium GEM foils
Presentation transcript:

08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 1 A.Kashchuk

08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 2

Near-end FEE- printed circuit board Anode wire Schematic view of the straw drift tube with 2 springs ‘a la COSY-TOF’ providing electrical contact to Cathode Far-end Elegant light-weight solution, What quality of the electrical contact ? Aging ? What inductance ? What other problems ? 08 September 20093A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg But

Gas gain uniformity along straw 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 4 Wire eccentricity or sagitta increases gas gain 20% (presented in Torino meeting) Fe-55 scanner 1%

New measurements on 75-cm straw tubes 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 5 It seems (as shown below), a sagitta is an intrinsic feature of the straw tube with 2 springs and even one (!) Mylar tubes with wall thickness 30µm Anode wire diameter 20µm Cathode diameter 10mm with metal thickness 300Å=30nm External layer with metal thickness 300Å=30nm Gas mixture Ar(90%)/CO2(10%) P=2000mb absolute at V=1550V

No sagitta without spring No puzzles anymore Measurements become reproducible, etc. 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 6

30%-sagitta simulated by force 8.7g applied to the far-end 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 7 F

Calculations by Vito Carassiti LOAD (N)DISPLACEMENT (mm) REACTION (N) K (N/mm) E E E E E September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 8 Load Reaction Force Bending Momentum

Counting characteristics without springs on X-rays Fe-55 Copper straw # September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 9 ~430V Note: Difference in counts on plateau are due to distance variations from the source to straw

Counting characteristics without springs on X-rays Fe-55 Aluminum straw # September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 10 ~460V Note: Difference in counts on plateau are due to distance variations from the source to straw

4 characteristic regions 08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg ? Electronics Threshold

Variations of the gas composition 08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg12 CO2(100%) ×7 Ar/CO2(10%) Pure Ar – the lowest electron drift velocity, but no quenching without CO2 450V600V

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg13 Ar(90%)CO2(10%) Electron drift velocity ~ 40µm/ns – the upper limit to get needed space resolution Note: Atlas MDT Ar(93)CO2(7%) at 3bar No aging High rate effect (!) Baseline mixture

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg14

Compare spectra with/without springs HV=1600V at P=1000mb (2000mb absolute) 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 15 Fe keV 3keV Fe keV 3keV FWHM=15%FWHM=25%

Gas gain measured vs. HV by peak position of 5.9keV (Fe-55) 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 16 Assuming 17% charge collection by the FE-amplifier at P=2000mb absolute and T=295K 5.9keV

Gas gain vs. P at HV=1550V 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 17 Note: Electron drift velocity is proportional to ratio E/P bad (!) P reduction increases velocity reducing spatial resolution – bad (!)

Needed gas gain 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 18 Note1: If ENC=3000e Th min =18000e=>4p.e. (~4% inefficiency) Then needed gas gain G min =38000 ln(G)=10.5 Using Diethorn’s fit HV min ~1550V HV min ~1420V HV min ~1550V Note2: Either HV or overpressure can be used for gas gain stabilization G(E/p)=const to compensate atmospheric pressure variations and keep constant efficiency and space resolution and more to have better time-space resolution

Compare HV-plateau at overpressure 500mb and 1000mb 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 19 ~460V ~420V

08 September 2009 A.Kashchuk INFN-Ferrara and PNPI- St.Petersburg 20 Good gas gain uniformity along straw Good Fe-55 spectra and HV-plateau At P=500mb (1500mb absolute) 1550V

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg21

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg22

The technique 08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg23 Fe-55 creates the signal in only one straw: N1, N2 counts N1, N2 Cross-talk, if the signal appears in both straws: Fe-55N1N2 AND AND/(N1+N2)

Electrical cross-talks (X-talks) between 2 straws below for X-rays Fe September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg24 0.1%-level AND N1, N2 Does not depend connected to ground or not (see w/o) the external layer

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg25 log 10 scale Above 1500V: Z-talks can reach 100% Electrical cross-talks are masked by Z-talks above 1500V AND N1, N2

Cross-talks in straw tube detectors by schematics 08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg26 Common impedance (Z-talks) Resonance Solution Electrical coupling (X-talks)

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg27

Electrical cross-talks vs. threshold (HV=1450V) 08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg28 Fe-55 count 1500Hz (extrapolation) Offset ch#2=959mV (CARIOCA_hot 13mV/fC) Offset ch#1=963mV (CARIOCA_hot 11mV/fC) Note: offset subtracted Th=1fC log(1500)=3.17

Z-talks vs. threshold The lines become more and more horizontal with increasing HV 08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg29 Fe-55 count 1500Hz (extrapolation) Offset ch#2=957mV (CARIOCA_hot 13mV/fC) Offset ch#1=965mV (CARIOCA_hot 11mV/fC) Note: offset subtracted Th=4fC at same gas gain will correspond to 12 p.e. (12% inefficiency) log(1500)=3.17

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg30 ?

Count multiplication seen by scope HV=1750V: Direct signal from CARIOCA – blue; First hit - red 08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg31

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg32

Fe-55 Cu # September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg33 ~600V V Discharge limit ~1850V ‘pro’=dead time prolongation (1-st hit counting) HV op >1550V Raether limit ~2×10 7 e

Fe-55 Al # September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg34 ~600V V Discharge limit ~1820V ‘pro’=dead time prolongation (1-st hit counting) HV op ~1550V Raether limit ~2×10 7 e

Inductance in common ground creates ringing on the FEE-input resulting multiple count on output 08 September 2009 A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 35 Z-talks Countratio Fe-55 Z-talks Z-talks Streamers t t

Streamers also create multiple pulses but longer 08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg36 HV=1820V: Direct signal from CARIOCA – blue; First hit - red

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg37 Sc. counter Straw 1 Straw 2 Note: Count collected during ~17mn/point 3000 events on plateau per 24 hours for tracking

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg38 HV op >1550V MIP~400V Z-talks region Z-talks can and must be suppressed Missing 12 3 Note: Missing ~200V due to lower primary Ionization 2 - HV-plateau for MIP continue up to discharge limit Z-talks region

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg 39 Z-talks Hv op >1550V

08 September 2009A.Kashchuk INFN-Ferrara and PNPI-St.Petersburg40