Spectral Type Astronomers use letters to describe the temperature Called the spectral type From hottest to coldest: O, B, A, F, G, K, M * Subdivided from.

Slides:



Advertisements
Similar presentations
1. absolute brightness - the brightness a star would have if it were 10 parsecs from Earth.
Advertisements

Chapter 11 Surveying the Stars. I.Parallax and distance. II.Luminosity and brightness Apparent Brightness (ignore “magnitude system” in book) Absolute.
Stars Stars are very far away.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 10 Measuring the Stars.
Chapter 11 Surveying the Stars Properties of Stars First let see how we measure three of the most fundamental properties of stars: 1.Luminosity.
Guiding Questions How far away are the stars?
Properties of Stars. Distance Luminosity (intrinsic brightness) Temperature (at the surface) Radius Mass.
Chapter 12: Surveying the Stars
Chapter 11 Surveying the Stars Properties of Stars Our goals for learning: How do we measure stellar luminosities? How do we measure stellar temperatures?
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
Astronomy Temperature, Luminosity, & H-R Diagram.
Key Ideas How are stars formed?
How Do Astronomers Measure the Brightness of a Star?  Stars vary greatly in brightness  Early peoples observed bright stars and grouped them into constellations.
PG. 127 Measuring the Stars. Groups of stars Long ago, people grouped bright stars and named them after animals, mythological characters or every day.
Surveying the Stars Insert TCP 5e Chapter 15 Opener.
Astronomy Origin and Fate of the Universe. Hubble’s Law Hubble’s law basically says that the universe is expanding. That is to say that the space between.
Hertzsprung – Russell Diagram A plot of the luminosity as a function of the surface temperature for different radii stars.
Stellar Spectra Colors/spectra of stars Classifying stars Photons Atomic structure Elements in stars Masses of stars Mass-luminosity relation Reading:
Spectroscopy – the study of the colors of light (the spectrum) given off by luminous objects. Stars have absorption lines at different wavelengths where.
Lecture 9 Stellar Spectra
Properties of Stars.
How are stars classified? What is an H-R diagram and how do astronomers use it?
The UniverseSection 1 Section 1: The Life and Death of Stars Preview Key Ideas Bellringer What Are Stars? Studying Stars The Life Cycle of Stars.
E2 Stellar radiation and stellar types Fusion PlE8&feature=relmfu.
26.2 Stars Proxima Centauri, the red star at the center, is the closest star to the sun.
Stars. Astronomy The study of space How astronomers measure distance 1. Light years– The distance light travels in one year 9.461x km.
Chapter 11 Surveying the Stars Properties of Stars Our Goals for Learning How luminous are stars? How hot are stars? How massive are stars?
Physical properties. Review Question What are the three ways we have of determining a stars temperature?
1 Stars Stars are very far away. The nearest star is over 270,000 AU away! ( Pluto is 39 AU from the Sun ) That is equal to 25 trillion miles! At this.
Stars A self-luminous celestial body consisting of a mass of gas held together by its own gravity in which the energy generated by nuclear reactions in.
READING Unit 22, Unit 23, Unit 24, Unit 25. Homework 4 Unit 19, problem 5, problem 7 Unit 20, problem 6, problem 9 Unit 21, problem 9 Unit 22, problem.
Copyright © 2010 Pearson Education, Inc. Chapter 10 Measuring the Stars.
Starlight and Atoms Chapter 6. The Amazing Power of Starlight Just by analyzing the light received from a star, astronomers can retrieve information about.
Stars Classifying stars: H-R diagram Vogt-Russell theorem Mass-luminosity relation Evolution on the HR diagram.
Solid Molecules Neutral Gas Ionized Gas (Plasma) Level of ionization also reveals a star’s temperature 10 K 10 2 K 10 3 K 10 4 K 10 5 K 10 6 K.
The Magnitude Scale A measure of the apparent brightness Logarithmic scale Notation: 1 m.4 (smaller  brighter) Originally six groupings –1 st magnitude.
StarsStars. A Star…. Heats and lights the planets in a solar system Is a ball of plasma (4 th state of matter consisting of ionized particles) held together.
The UniverseSection 1 Key Ideas 〉 How are stars formed? 〉 How can we learn about stars if they are so far away? 〉 What natural cycles do stars go through?
Ch. 12 Lesson 1 Stars. What are stars? A star is large ball of gas that emits (gives off) energy produced by nuclear reactions in the star’s interior.
Classification of Stars – HR diagram Objectives: understand the differences between near and bright visible stars learn how to use the HR-diagram to classify.
Finding the absolute Magnitude To figure out absolute magnitude, we need to know the distance to the star Then do the following Gedankenexperiment: –In.
Measuring the Stars Chapter Grouping of Stars Groups of stars named after animals, mythological characters, or everyday objects are called constellations.
Stars Luminous gaseous celestial body – spherical in shape held by its own gravity.
Lecture 10: Light & Distance & Matter Astronomy 1143 – Spring 2014.
Intro to Astrophysics Dr. Bill Pezzaglia 1 Updated: Nov 2007.
EARTH & SPACE SCIENCE Chapter 30 Stars, Galaxies, and the Universe
Ch. 27 Stars and Galaxies Ch Characteristics of Stars.
 Students will be able to determine how distances between stars are measured.  Students will be able to distinguish between brightness and luminosity.
© 2011 Pearson Education, Inc. Chapter 17 Measuring the Stars.
Chapter 11 Surveying the Stars. How do we measure stellar luminosities?
Stars Goal: Compare star color to star temperature.
Copyright © 2012 Pearson Education, Inc. Chapter 11 Surveying the Stars.
Properties of Stars. "There are countless suns and countless earths all rotating around their suns in exactly the same way as the seven planets of our.
Lesson 23 Measuring the Properties of Stars. The Family of Stars Those tiny glints of light in the night sky are in reality huge, dazzling balls of gas,
Stars Earth Science – Mr. Foster. Why do stars exist? Stars exist because of gravity Two opposing forces in a star are – Gravity – contracts – Thermal.
Unit 2 - Cosmology Part 1: Stars Part 2: Galaxies Part 3: Origin and Evolution of the Universe.
Charles Hakes Fort Lewis College1. Charles Hakes Fort Lewis College2 Chapter 10 Measuring the Stars.
Astronomy Basic Properties of Stars. Kirchhoff’s Three Kinds of Spectra.
E2 Stellar radiation and stellar types
Option D.2 Stellar Characteristics. Stars A star is a big ball of gas with fusion going on in its center that is held together by gravity Stars are formed.
© 2017 Pearson Education, Inc.
Astronomy-Part 3 Notes Characteristics of Stars
Stars! How do we know what we know about stars?
Astronomy-Part 3 Notes Characteristics of Stars
NOTES: Star Chemistry and Measurement
Stars and HR Diagrams.
Star Chemistry and Measurement
Unit 5 Review.
Basic Properties of Stars
To help understand the HR Diagram 
Presentation transcript:

Spectral Type Astronomers use letters to describe the temperature Called the spectral type From hottest to coldest: O, B, A, F, G, K, M * Subdivided from 0-9, with 0 the hottest Sun is a G2 star, for example “Oh, be a fine girl, kiss me” How can we determine spectral type? Wien’s Law Impractical Filters! Compare light in different ranges V filter focuses on middle of visible range B filter focuses on blue end of spectrum R filter focuses on red end of spectrum *Why I hate astronomers #1

Atoms The outer layers of stars are cool enough that electrons bind to nuclei to make atoms The electrons can be at a variety of energy “levels” Hard to calculate for anything but hydrogen Easy to measure here on Earth An incoming photon can be absorbed, and make the electron move to a higher energy level But only if it has the right energy/wavelength An excited electron can also fall back, emitting a photon But only if it has the right energy and wavelength These energies are the same for absorption/emission These energies have a small spread, due to: Uncertainty principle Influence of nearby atoms (pressure broadening) Doppler broadening caused by moving atoms (aka thermal broadening)

Kirchoff’s Laws Deep inside a star, the gas is so thick, everything gets completely thermalized, and you get a black body, or continuous spectrum But outside the star, things aren’t so simple: 1)If you have a hot, thick gas, you get a continuous spectrum 2)If you have a hot, thin gas, you get a bright line spectrum 3)If you view a hot, thick gas through a thin, cooler gas, you get a dark line spectrum Stars are hot on the inside, cooler on the outside, so you get a dark line spectrum

Kirchoff’s Laws (summary) Hot thick gas: Hot thin gas: Hot thick gas in front of cooler gas: Each possible type of gas (hydrogen, helium, etc.) gives characteristic dark lines If you have two elements, you’d have two sets of lines The combination of lines tells you what the star is composed of The strength (darkness) of the lines tells you the fraction of each element It also depends on the temperature The width of the lines tells you the pressure A hint about the mass, size, etc. of the star

The Sun’ Spectrum

Other star’s spectra

Composition of Stars Most stars have outer composition made of hydrogen, helium, other things: Hydrogen mass fraction: called X Typically 70-80% Helium mass fraction: called Y Typically 20-30% Everything else: called Z or metallicity* Ranges from up to a few % *Why I hate astronomers #2 During most of their life, stars do not mix their composition very much Surface composition represents (roughly) composition at the time of their birth Exceptions: Dead stars Dying stars The oldest stars tend to have very low metallicity Suggests that even in early universe, there was hydrogen and helium, not much else

The Doppler Effect Stars are often in motion, sometimes very fast This causes a shift in spectral lines Due to waves getting “scrunched together” in front or “spread apart” in back Formula for shift in frequency f is observed frequency f 0 is emitted frequency Objects normally move Slowly (v 2 /c 2 small), or Straight away from us (v = vcos  = - v r ) We therefore can simplify this formula: v r is the velocity away from us Normally, this is rewritten in terms of wavelength Recall f = c.

Stars in Motion: Radial Velocities By studying the spectrum, we can measure the star’s motion towards or away from us Reference spectrum: Star’s spectrum Since spectral lines are shifted towards shorter wavelengths, star is moving towards us Called blue shift If the spectral lines are shifted towards longer wavelengths, star moving away Called red shift The red shift parameter, denoted z is defined by* For small velocities, we can see that: The red shift, and hence the radial velocity, can be measured for any object Independent of distance *Why I hate astronomers #3

Distance, Luminosity and Brightness The Luminosity L is how bright a star actually is Units: watts The Brightness b is how bright a star looks Units: watts/m 2 The distance d is how far away the star is These are related: Sphere: A = 4  d 2 d Star X and star Y have the same brightness, but star X is ten times farther away. How do the star’s luminosities compare?

Apparent Magnitudes Any sensible person would use luminosity and brightness to describe how bright something is and how bright it looks But astronomers aren’t sensible In ancient times, stars were given an apparent magnitude based on brightness Brightest stars were called 1 st magnitude Dimmest were 6 th magnitude Denoted by m Note that the bigger m is, the smaller the brightness * It was later realized that it is approximately a logarithmic scale Each five magnitudes is a factor of 100 brightness Each unit increase is 100 1/5 = times dimmer *Why I hate astronomers #4

We can simply measure the brightness of a star If we know the distance, we can get the Luminosity Much, much more on this later If we know the luminosity, we can get the distance Ditto Complications: (don’t worry about these) Dust and other obscurations complicate this A problem we will ignore, mostly Filters: How bright something looks depends partly on the filter you use This formula must be modified for the type of filter you use Hence there are many apparent magnitudes, m V, m B, m R, etc. We’ll deal with only the total brightness (unfiltered) Called bolometric magnitude, denoted m bol Comments on Luminosity and Brightness:

Sample Problem Star X is 1000 times brighter than star Y. How do their apparent magnitudes compare? What if it is N times brighter?

Absolute Magnitudes How bright a star really is depends on how bright it looks and how far away it is Define: Absolute Magnitude: The apparent magnitude of the star if it were 10 pc away Why 10 pc? I don’t know – but it’s a typical distance for a nearby star Denoted by M We can then determine a nice formula relating distance, apparent magnitude, and absolute magnitude:

The Hertzsprung-Russell Diagram Stars have lots of properties which we could use to characterize them: Brightness Distance Velocity Mass Age Composition Color Luminosity Mass Temperature The Hertzsprung-Russell (HR) diagram is a plot of spectral class vs. luminosity Hot on the left Not intrinsic Hard to Measure Uniform Derivable

The HR Diagram: Patterns The stars are not distributed randomly on the H-R diagram: Main sequence stars 90+% of living stars Giants Rare Easy to see because they are bright Supergiants Very Rare White Dwarfs Dead Stars, very dim