6 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity Planning Chapter 6.

Slides:



Advertisements
Similar presentations
6 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity Planning 6 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Advertisements

To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved. Process.
Capacity After deciding what products/services should be offered and how they should be made, management must plan the capacity of its processes. Capacity.
Capacity Planning. How much long-range capacity is needed When more capacity is needed Where facilities should be located (location) How facilities should.
6 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity Planning 6 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Constraint Management
6 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity Planning (Long-Term Capacity Planning) 6.
PRODUCTION AND OPERATIONS MANAGEMENT
Capacity Planning For Products and Services
Capacity Planning Chapter 6
MD707 Operations Management Professor Joy Field
6 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity Planning 6 For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
© 2007 Pearson Education Constraint Management Chapter 7.
Constraint Management
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 5 Capacity Planning For Products and Services.
Capacity planning.
To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Sixth Edition © 2002 Prentice Hall, Inc. All rights reserved. Chapter 8.
Facilities and Aggregate Planning. A digression I am not an advocate of gambling, but use an example here that you might draw on later. Say I have a coin.
CAPACITY LOAD OUTPUT.
7 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Constraint Management (Short-term Capacity Planning) 7.
©2002 Prentice Hall Business Publishing, Introduction to Management Accounting 12/e, Horngren/Sundem/Stratton Chapter 11 Capital Budgeting.
© 2009 Pearson Prentice Hall. All rights reserved. Capital Budgeting and Cost Analysis.
Copyright © 2011 Pearson Prentice Hall. All rights reserved. Financial Forecasting and Planning Chapter 17.
©2003 Prentice Hall Business Publishing, Cost Accounting 11/e, Horngren/Datar/Foster Capital Budgeting and Cost Analysis Chapter 21.
Copyright © 2007 Prentice-Hall. All rights reserved 1 Special Business Decisions and Capital Budgeting Chapter 25.
KR: Chapter 8 Capacity. Chapter Outline Introduction Measures of capacity Capacity unit Peak capacity vs. effective capacity Bottleneck Economies of scale.
Operations Management Capacity Planning Supplement 7
For Products and Services
26 - 1©2002 Prentice Hall, Inc. Business Publishing Accounting, 5/E Horngren/Harrison/Bamber Chapter 26 Special Business Decisions and Capital Budgeting.
©2005 Prentice Hall Business Publishing, Introduction to Management Accounting 13/e, Horngren/Sundem/Stratton Copyright © 2014 Pearson Education,
Operations Management
Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 4 How Businesses Work.
4 C H A P T E R Capital Investment Decisions.
Chapter 4 How Businesses Work McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 10 Making Capital Investment Decisions McGraw-Hill/Irwin Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.
Copyright © 2012 Pearson Prentice Hall. All rights reserved. Chapter 4 Cash Flow and Financial Planning.
©2002 Prentice Hall Business Publishing, Introduction to Management Accounting 12/e, Horngren/Sundem/Stratton Chapter 11 Capital Budgeting.
To Accompany Ritzman & Krajewski, Foundations of Operations Management © 2003 Prentice-Hall, Inc. All rights reserved. Chapter 6 Capacity.
To Accompany Krajewski & Ritzman Operations Management: Strategy and Analysis, Seventh Edition © 2004 Prentice Hall, Inc. All rights reserved. Process.
©2005 Prentice Hall Business Publishing, Introduction to Management Accounting 13/e, Horngren/Sundem/Stratton Capital Budgeting Chapter 11.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 3 Cash Flow and Financial Planning.
PowerPoint presentation to accompany Heizer/Render - Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
A – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Decision Making A For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
C A P A C I T Y Dr. Dewi Nusraningrum, M.Si. CAPACITY PLANNING - Capacity is the maximum rate of output for a facility. - Capacity planning is central.
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. 1-1 McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights.
Module 4: Capacity Capacity
F – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Financial Analysis F For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
©2005 Prentice Hall Business Publishing, Introduction to Management Accounting 13/e, Horngren/Sundem/Stratton ©2008 Prentice Hall Business Publishing,
© 2007 Pearson Education Constraint Management Chapter 7.
CHAPTER 8 CAPACITY. THE CONCEPT Maximum rate of output for a process Inadequate capacity can lose customers and limit growth while excess capacity can.
Constraint Management
Capacity Planning Pertemuan 04
PowerPoint Authors: Susan Coomer Galbreath, Ph.D., CPA Charles W. Caldwell, D.B.A., CMA Jon A. Booker, Ph.D., CPA, CIA Cynthia J. Rooney, Ph.D.,
©2005 Prentice Hall Business Publishing, Introduction to Management Accounting 13/e, Horngren/Sundem/Stratton Capital Budgeting Chapter 11.
Accounts & Finance Investment Appraisal. Learning Objectives To understand what investment means, why appraising investment projects is essential and.
Financial Analysis Supplement F Copyright ©2013 Pearson Education, Inc. publishing as Prentice HallF- 01.
 Capacity is the ability of a process or system to hold, receive, store or accommodate.  In business terms, it is the amount of output that a system.
© John Wiley & Sons, 2011 Chapter 12: Strategic Investment Decisions Eldenburg & Wolcott’s Cost Management, 2eSlide # 1 Cost Management Measuring, Monitoring,
© 2006 Prentice Hall, Inc.S7 – 1 Operations Management Supplement 7 – Capacity Planning © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany.
5-1Capacity Planning William J. Stevenson Operations Management 8 th edition.
A – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Decision Making A For Operations Management, 9e by Krajewski/Ritzman/Malhotra.
Capacity Planning.
Constraint Management
Capacity Planning For Products and Services
Capacity Planning For Products and Services
Stevenson 5 Capacity Planning.
Planning Capacity Chapter 4.
Production and Operations Management
Capacity Planning For Products and Services
Presentation transcript:

6 – 1 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity Planning Chapter 6

6 – 2 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Planning Capacity Capacity is the maximum rate of output of a process or system Accounting, finance, marketing, operations, purchasing, and human resources all need capacity information to make decisions Capacity planning is done in the long-term and the short-term Questions involve the amount of capacity cushion and expansion strategies

6 – 3 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Planning Capacity Capacity planning (long-term)  Economies and diseconomies of scale  Capacity timing and sizing strategies  Systematic approach to capacity decisions Constraint management (short-term)  Theory of constraints  Identification and management of bottlenecks  Product mix decisions using bottlenecks  Managing constraints in a line process Capacity management

6 – 4 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Measures of Capacity Utilization Output measures of capacity Input measures of capacity Utilization Utilization =  100% Average output rate Maximum capacity

6 – 5 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity and Scale Economies of scale  Spreading fixed costs  Reducing construction costs  Cutting costs of purchased materials  Finding process advantages Diseconomies of scale  Complexity  Loss of focus  Inefficiencies

6 – 6 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity and Scale Figure 6.1 – Economies and Diseconomies of Scale 250-bed hospital 500-bed hospital 750-bed hospital Output rate (patients per week) Average unit cost (dollars per patient) Economies of scale Diseconomies of scale

6 – 7 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity Timing and Sizing Capacity cushions are the amount of reserve capacity a process uses to handle sudden changes Capacity cushion = 100% – Average Utilization rate (%) Expansionist strategies Wait-and-see strategies Combination of strategies

6 – 8 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Capacity Timing and Sizing Planned unused capacity Time Capacity Forecast of capacity required Time between increments Capacity increment (a) Expansionist strategy Figure 6.2 – Two Capacity Strategies

6 – 9 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Time Capacity (b) Wait-and-see strategy Planned use of short-term options Time between increments Capacity increment Capacity Timing and Sizing Forecast of capacity required Figure 6.2 – Two Capacity Strategies

6 – 10 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Systematic Approach 1.Estimate future capacity requirements 2.Identify gaps by comparing requirements with available capacity 3.Develop alternative plans for reducing the gaps 4.Evaluate each alternative, both qualitatively and quantitatively, and make a final choice

6 – 11 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Systematic Approach Step 1 is to determine the capacity required to meet future demand using an appropriate planning horizon Output measures based on rates of production Input measures may be used when  Product variety and process divergence is high  The product or service mix is changing  Productivity rates are expected to change  Significant learning effects are expected

6 – 12 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Systematic Approach For one service or product processed at one operation with a one year time period, the capacity requirement, M, is Capacity requirement = Processing hours required for year’s demand Hours available from a single capacity unit (such as an employee or machine) per year, after deducting desired cushion M = Dp N[ 1 – ( C /100) ] where D =demand forecast for the year (number of customers serviced or units of product) p =processing time (in hours per customer served or unit produced) N =total number of hours per year during which the process operates C =desired capacity cushion (expressed as a percent)

6 – 13 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Systematic Approach Setup times may be required if multiple products are produced Capacity requirement = Processing and setup hours required for year’s demand, summed over all services or products Hours available from a single capacity unit per year, after deducting desired cushion M = [Dp + ( D / Q ) s] product 1 + [Dp + ( D / Q ) s] product 1 + … + [Dp + ( D / Q ) s] product n N[ 1 – ( C /100) ] where Q =number of units in each lot s =setup time (in hours) per lot

6 – 14 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Estimating Capacity Requirements EXAMPLE 6.1 A copy center in an office building prepares bound reports for two clients. The center makes multiple copies (the lot size) of each report. The processing time to run, collate, and bind each copy depends on, among other factors, the number of pages. The center operates 250 days per year, with one 8-hour shift. Management believes that a capacity cushion of 15 percent (beyond the allowance built into time standards) is best. It currently has three copy machines. Based on the following table of information, determine how many machines are needed at the copy center. ItemClient XClient Y Annual demand forecast (copies)2,0006,000 Standard processing time (hour/copy) Average lot size (copies per report)2030 Standard setup time (hours)

6 – 15 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Estimating Capacity Requirements SOLUTION M = [Dp + ( D / Q ) s] product 1 + [Dp + ( D / Q ) s] product 1 + … + [Dp + ( D / Q ) s] product n N[ 1 – ( C /100) ] = [2,000(0.5) + (2,000/20)(0.25)] client X + [6,000(0.7) + (6,000/30)(0.40)] client Y [(250 day/year)(1 shift/day)(8 hours/shift)][1.0 - (15/100)] = = ,305 1,700 Rounding up to the next integer gives a requirement of four machines.

6 – 16 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Systematic Approach Step 2 is to identify gaps between projected capacity requirements ( M ) and current capacity  Complicated by multiple operations and resource inputs Step 3 is to develop alternatives  Base case is to do nothing and suffer the consequences  Many different alternatives are possible

6 – 17 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Systematic Approach Step 4 is to evaluate the alternatives  Qualitative concerns include strategic fit and uncertainties  Quantitative concerns may include cash flows and other quantitative measures

6 – 18 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Evaluating the Alternatives EXAMPLE 6.2 Grandmother’s Chicken Restaurant is experiencing a boom in business. The owner expects to serve 80,000 meals this year. Although the kitchen is operating at 100 percent capacity, the dining room can handle 105,000 diners per year. Forecasted demand for the next five years is 90,000 meals for next year, followed by a 10,000-meal increase in each of the succeeding years. One alternative is to expand both the kitchen and the dining room now, bringing their capacities up to 130,000 meals per year. The initial investment would be $200,000, made at the end of this year (year 0). The average meal is priced at $10, and the before-tax profit margin is 20 percent. The 20 percent figure was arrived at by determining that, for each $10 meal, $8 covers variable costs and the remaining $2 goes to pretax profit. What are the pretax cash flows from this project for the next five years compared to those of the base case of doing nothing?

6 – 19 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Evaluating the Alternatives SOLUTION Recall that the base case of doing nothing results in losing all potential sales beyond 80,000 meals. With the new capacity, the cash flow would equal the extra meals served by having a 130,000-meal capacity, multiplied by a profit of $2 per meal. In year 0, the only cash flow is –$200,000 for the initial investment. In year 1, the 90,000-meal demand will be completely satisfied by the expanded capacity, so the incremental cash flow is (90,000 – 80,000)($2) = $20,000. For subsequent years, the figures are as follows: Year 2: Demand = 100,000; Cash flow = (100,000 – 80,000)$2 = $40,000 Year 3: Demand = 110,000; Cash flow = (110,000 – 80,000)$2 = $60,000 Year 4: Demand = 120,000; Cash flow = (120,000 – 80,000)$2 = $80,000 Year 5: Demand = 130,000; Cash flow = (130,000 – 80,000)$2 = $100,000

6 – 20 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. NPV of Cash flow CapacityPresentProposed Kitchen80,000130,000 Dining capacity105,000130,000 Profit/meal$2.00 Discount rate10% YearDemand Meals sold -- Present Meals sold -- ProposedDifferenceCash flow 0 $(200,000) 1 90,000 80,000 90,000 10,000 $20, ,000 80, ,000 20,000 $40, ,000 80, ,000 30,000 $60, ,000 80, ,000 40,000 $80, ,000 80, ,000 50,000 $100,000 NPV =$13,052

6 – 21 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Evaluating the Alternatives If the new capacity were smaller than the expected demand in any year, we would subtract the base case capacity from the new capacity (rather than the demand). The owner should account for the time value of money, applying such techniques as the net present value or internal rate of return methods (see Supplement F, “Financial Analysis,” in myomlab). For instance, the net present value (NPV) of this project at a discount rate of 10 percent is calculated here, and equals $13, NPV=–200,000 + [(20,000/1.1)] + [40,000/(1.1) 2 ] + [60,000/(1.1) 3 ] + [80,000/(1.1) 4 ] + [100,000/(1.1) 5 ] =–$200,000 + $18, $33, $45, $54, $62, =$13,052

6 – 22 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Tools for Capacity Planning Waiting-line models  Useful in high customer-contact processes  Supplement C, “Waiting Lines” is a fuller treatment of the models Simulation  Can be used when models are too complex for waiting-line analysis Decision trees  Useful when demand is uncertain and sequential decisions are involved

6 – 23 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Decision Trees 1 Low demand [0.40] High demand [0.60] Low demand [0.40] High demand [0.60] $70,000 $220,000 $40,000 $135,000 $90,000 Small expansion Large expansion Don’t expand Expand 2 Figure 6.4 – A Decision Tree for Capacity Expansion $135,000 $109,000 $148,000

6 – 24 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Solved Problem 1 You have been asked to put together a capacity plan for a critical operation at the Surefoot Sandal Company. Your capacity measure is number of machines. Three products (men’s, women’s, and children’s sandals) are manufactured. The time standards (processing and setup), lot sizes, and demand forecasts are given in the following table. The firm operates two 8-hour shifts, 5 days per week, 50 weeks per year. Experience shows that a capacity cushion of 5 percent is sufficient. a.How many machines are needed? b.If the operation currently has two machines, what is the capacity gap? Time Standards Product Processing (hr/pair) Setup (hr/pair) Lot size (pairs/lot) Demand Forecast (pairs/yr) Men’s sandals ,000 Women’s sandals ,000 Children’s sandals ,000

6 – 25 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Solved Problem 1 SOLUTION a.The number of hours of operation per year, N, is N = (2 shifts/day)(8 hours/shifts) (250 days/machine-year) = 4,000 hours/machine-year The number of machines required, M, is the sum of machine- hour requirements for all three products divided by the number of productive hours available for one machine: M =M = [Dp + ( D / Q ) s] men + [Dp + ( D / Q ) s] women + [Dp + ( D / Q ) s] children N[ 1 - ( C /100) ] = [80,000(0.05) + (80,000/240)0.5] + [60,000(0.10) + (60,000/180)2.2] + [120,000(0.02) + (120,000/360)3.8] 4,000[1 - (5/100)] == 3.83 or 4 machines 14,567 hours/year 3,800 hours/machine-year

6 – 26 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Solved Problem 2 The base case for Grandmother’s Chicken Restaurant (see Example 6.2) is to do nothing. The capacity of the kitchen in the base case is 80,000 meals per year. A capacity alternative for Grandmother’s Chicken Restaurant is a two-stage expansion. This alternative expands the kitchen at the end of year 0, raising its capacity from 80,000 meals per year to that of the dining area (105,000 meals per year). If sales in year 1 and 2 live up to expectations, the capacities of both the kitchen and the dining room will be expanded at the end of year 3 to 130,000 meals per year. This upgraded capacity level should suffice up through year 5. The initial investment would be $80,000 at the end of year 0 and an additional investment of $170,000 at the end of year 3. The pretax profit is $2 per meal. What are the pretax cash flows for this alternative through year 5, compared with the base case?

6 – 27 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Solved Problem 2 SOLUTION Table 6.1 shows the cash inflows and outflows. The year 3 cash flow is unusual in two respects. First, the cash inflow from sales is $50,000 rather than $60,000. The increase in sales over the base is 25,000 meals (105,000 – 10,000) instead of 30,000 meals (110,000 – 80,000) because the restaurant’s capacity falls somewhat short of demand. Second, a cash outflow of $170,000 occurs at the end of year 3, when the second-stage expansion occurs. The net cash flow for year 3 is $50,000 – $170,000 = –$120,000.

6 – 28 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Solved Problem 2 TABLE 6.1 | CASH FLOWS FOR TWO-STAGE EXPANSION AT GRANDMOTHER’S CHICKEN RESTAURANT Year Projected Demand (meals/yr) Projected Capacity (meals/yr) Calculation of Incremental Cash Flow Compared to Base Case (80,000 meals/yr) Cash Inflow (outflow) 080,000 Increase kitchen capacity to 105,000 meals = ($80,000) 190,000105,00090,000 – 80,000 = (10,000 meals)($2/meal) = $20, ,000105,000100,000 – 80,000 = (20,000 meals)($2/meal) =$40, ,000105,000105,000 – 80,000 = (25,000 meals)($2/meal) = $50,000 Increase total capacity to 130,000 meals = ($170,000) ($120,000) 4120,000130,000120,000 – 80,000 = (40,000 meals)($2/meal) = $80, , ,000 – 80,000 = (50,000 meals)($2/meal) = $100,000

6 – 29 Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall. Solved Problem 2 NPV=–80,000 + (20,000/1.1) + [40,000/(1.1) 2 ] – [120,000/(1.1) 3 ] + [80,000/(1.1) 4 ] + [100,000/(1.1) 5 ] =–$80,000 + $18, $33, – $90, $54, $62, =–$2, For comparison purposes, the NPV of this project at a discount rate of 10 percent is calculated as follows, and equals negative $2, On a purely monetary basis, a single-stage expansion seems to be a better alternative than this two-stage expansion. However, other qualitative factors as mentioned earlier must be considered as well.