Universidad de Alicante. Alicante (Spain) Modelling the populations of Trans-Neptunian Objects Paula G. Benavidez & Adriano Campo.

Slides:



Advertisements
Similar presentations
Properties of super-heavy elements in Hartree-Fock-Bogolubov model with the Gogny force. M. Warda Katedra Fizyki Teoretycznej, Uniwersytet Marii Curie-Skłodowskiej,
Advertisements

J-M Petit, TNO2006, Catania. July 03-07, 2006 The CFHT Survey: First results Jean-Marc Petit CNRS/Observatoire de Besançon (Please look at the notes. All.
HANd : A New Transcoding Technique for PDA Browsers Enrique Costa Montenegro Departamento de Ingeniería Telemática ETSI Telecomunicación Universidad de.
Comets, Centaurs, & TNOs AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2006/2007 B. Dermawan AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi.
Origins of Regular and Irregular Satellites ASTR5830 March 21, :30-1:45 pm.
Compiled by John McFarlane 20 th June th June Slides Duration 6:35 minutes Version V.01.
How Many Planets… In Our Solar System? With the advent of powerful new telescopes on the ground and in space, recent new discoveries have been made of.
Comets, Centaurs, & TNOs AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 B. Dermawan.
A numerical check of the Collisional Resurfacing scenario Philippe Thébault & Alain Doressoundiram Observatoire de Meudon.
1 CLUSTER ANALYSIS OF EUROPEAN DAILY TEMPERATURE SERIES: AN EXTREME VALUE APPROACH Andrés M. Alonso Departamento de Estadística Universidad Carlos II de.
1/03/09 De 89 à 98. 1/03/09 De 89 à 98 1/03/09 De 89 à 98.
IMPLANTS 2012 De la création au financement 31/05/20121Implants
Dynamics of the young Solar system Kleomenis Tsiganis Dept. of Physics - A.U.Th. Collaborators: Alessandro Morbidelli (OCA) Hal Levison (SwRI) Rodney Gomes.
N U Neptune crossing 3:22:1 Plutinos classical KBOs scattered KBOs N U.
Physics and Astronomy University of Utah Extreme Solar Systems II Fall 2011 The Evolution of Protoplanetary Disks and the Diversity of Giant Planets Diversity.
10Nov2006 Ge/Ay133 More on Jupiter, Neptune, the Kuiper belt, and the early solar system.
Does the Kuiper Belt have an edge? Ming-Chang Liu.
Synthetic Solar System Model (S3M) MOPS Workshop Tucson, March 11th 2008 Tommy Grav.
WISDNA: An Information Visualization Paradigm for XML Ricardo Baeza-Yates, Ricardo Lemus, Dulce Ponceleon, Savitha Srinivasan Presented by Ricardo Lemus.
Universidad Autónoma Metropolitana Unidad Azcapotzalco Departamento de Sistemas “INTRODUCCIÓN A LA PROGRAMACIÓN” Profesor:Jesús Isidro González Trejo Programa.
Trans-Neptunian Objects and Pluto Astronomy 311 Professor Lee Carkner Lecture 21.
Trans-Neptunian Objects and Pluto Astronomy 311 Professor Lee Carkner Lecture 21.
1 Removal of Impulse Noise in Images by Means of the Use of Support Vector Machines H. Gómez-Moreno, S. Maldonado-Bascón, F. López-Ferreras, and P. Gil-Jiménez.
Communication Software Title Group member 1 Group member 2 Group member 3 Group member 4 Departamento de Ingeniería Telemática Universidad Carlos.
Centro de Electrónica Industrial (CEI) | Universidad Politécnica de Madrid | | Abstract Texto TITLE 1 Texto Texto Bolo2  Texto.
Programa “Números ASCII” Ing. Arturo Díaz Vargas Departamento de Sistemas División de Ciencias Básicas e Ingeniería UNIVERSIDAD AUTONOMA METROPOLITANA.
29 NOVEMBER 2007 CLASS #25 Astronomy 340 Fall 2007.
Mass Distribution and Planet Formation in the Solar Nebula Steve Desch School of Earth and Space Exploration Arizona State University Lunar and Planetary.
Outer Solar System. Planets Outer solar system is dominated entirely by the four Jovian planets, but is populated by billions of small icy objects Giant.
Departamento de Lenguajes y Sistemas Informáticos escuela técnica superior de ingeniería informática Business Family Engineering Does it make sense ? Ildefonso.
Accretion disk Small bodies in the Solar System Accretion disk Small bodies in the Solar System.
Jean-Pierre needs to be brought up to date on what’s really going on in astronomy these days!
Completing the Inventory of the Outer Solar System Scott S. Sheppard Carnegie Institution of Washington Department of Terrestrial Magnetism.
David Nesvorny David Vokrouhlicky (SwRI) Alessandro Morbidelli (CNRS) David Nesvorny David Vokrouhlicky (SwRI) Alessandro Morbidelli (CNRS) Capture of.
Tuesday October 23, 2012 (Lunar History – The Formation of the Moon)
SEDNA: New Planet or Interstellar Menace? Steven Gibson The University of Calgary March 30, 2004.
David Nesvorny (Southwest Research Institute) David Nesvorny (Southwest Research Institute) Capture of Irregular Satellites during Planetary Encounters.
Trans-Neptunian Objects and Pluto Astronomy 311 Professor Lee Carkner Lecture 21.
WHY DO WE WANT TO MODEL THE COLLISIONAL EVOLUTION OF MBPs? SOLAR SYSTEM FORMATION : what was the primordial distribution of the minor body population.
"The Eventful Universe'', Tucson AZ, March 19, 2010 Transient phenomena and variations in comets, asteroids, centaurs and trans- Neptunian objects Béatrice.
Neptune’s Resonances With Kuiper Belt Objects and What It Tells Us About the Early Solar System The Origin of Pluto’s Orbit: Implications for the Solar.
Possible Projects hot topics Messenger results Curiosity results Dawn results Cassini results outstanding objects Jovian moons edge of the Solar System.
1 The Pluto System in the Context of Kuiper Belt Formation & Evolution A. Morbidelli (OCA – Nice)
Pluto, the Kuiper Belt, and Trans-Neptunian Objects
22.2 Comets and Kuiper Belt Objects Roxanne Ryan.
Wednesday September 29, 2010 (Scattered Disk, Oort Cloud)
Cratering in the Solar System William Bottke Southwest Research Institute Boulder, Colorado.
Collision Enhancement due to Planetesimal Binary Formation Planetesimal Binary Formation Junko Kominami Jun Makino (Earth-Life-Science Institute, Tokyo.
Current structure of the TNB Alvaro Alvarez-Candal.
Dynamical constraints on the nature of the Late Heavy Bombardment and models of its origin A.Morbidelli Observatoire de la Cote d’Azur, Nice, France.
。 33 投资环境 3 开阔视野 提升竞争力 。 3 嘉峪关市概况 。 3 。 3 嘉峪关是一座新兴的工业旅游城市,因关得名,因企设市,是长城文化与丝路文化交 汇点,是全国唯一一座以长城关隘命名的城市。嘉峪关关城位于祁连山、黑山之间。 1965 年建市,下辖雄关区、镜铁区、长城区, 全市总面积 2935.
Friday October 14, 2011 (Quiz 6; The Oort Cloud).
Genre Classification of Music by Tonal Harmony Carlos Pérez-Sancho, David Rizo Departamento de Lenguajes y Sistemas Informáticos, Universidad de Alicante,
Astronomy 340 Fall December 2005 Class #24.
Capture of Irregular Satellites during Planetary Encounters
Department of Physics, University of Michigan-Ann Arbor
Where is this? ENCELADUS by CASSINI Planetary Sciences.
Goal: To understand what the Kuiper Belt is, and why it is important
Contact me: Juliette Becker, ( )
Fig. 2. Semi-major axis vs. eccentricity (left) and semi-major axis vs
14b. Pluto, Kuiper Belt & Oort Cloud
Dr. Christine M. Rodrigue
COST Action ES1104: Setting Up a Drylands and Desert Restoration Hub
معلم الصف الثالث الابتدائي
ФОНД “СОЦИАЛНО ПОДПОМАГАНЕ”
Marina Blanco-Lomas,†,§ Subhas Samanta,‡,§ Pedro J. Campos,† G
Solar System Science with Subaru and HSC
Starting Line 1. turn in Homework #1 2. book check 3. topic selections
Unit 4: Astronomy Lesson 4: The Solar System
Ch. 12 Dwarf Planets There are several kinds of objects in our Solar System Terrestrial planets and Jovian planets, with satellites (moons) Dwarf planets.
Presentation transcript:

Universidad de Alicante. Alicante (Spain) Modelling the populations of Trans-Neptunian Objects Paula G. Benavidez & Adriano Campo Bagatin Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal

VII WORKSHOP ON CATASTROPHIC DISRUPTIONS IN THE SOLAR SYSTEM (CD07) Alicante (Spain) June 26th to 29th, 2007 Info/mailing list:

Universidad de Alicante. Alicante (Spain) Modelling the populations of Trans-Neptunian Objects Paula G. Benavidez & Adriano Campo Bagatin Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal

A collisional model for TNOs Collisional evolution of TNOs and the migration of Neptune Results Conclusions

A collisional model for TNOs

eccentricity (e) inclination (i) 3 populations: Plutinos Classical Disk Scattered Disk (MPC database) A collisional model for TNOs

PlutinosClassical DiskScattered Disk a (AU) s s s e i (º) A collisional model for TNOs

zone 1 Zone 1: 35(1-0.13) AU< a <40(1+0.13) AU e=0.13 i=6º

zone 2 zone 1 Zone 2: 40(1-0.05) AU< a <50(1+0.05) AU e=0.05 i=5.5º

zone 2 zone 1 overlap

zone 2 zone 1 overlap zone 3 Zone 3: 40(1-0.18) AU< a <50(1+0.18) AU e=0.18 i=25º

zone 1 Ecliptic plane

zone 1 zone 2 Ecliptic plane

zone 1 zone 2 Ecliptic plane zone 3

A collisional model for TNOs Collisional evolution for each zone: PIAB model, with distribution for V Ri. Interactions in overlapping zones: Accurately, considering how much objects spend in common zones. Fragmentation/cratering/reaccumulation model: Petit & Farinella (1993), updated.

A collisional model for TNOs Some parameters for physics and evolution: Zone 1 (Plutinos) Zone 2 (Classical Disk) Zone 3 (Scattered Disk) a (AU) [MPC] s [MPC] (km/s) [Dell’Oro et al., 2001] Scaling laws for S: Gravity, G. + “strain rate effect” (Davis), Hydrocode (weak mortar)

Migration of Neptune? ( Ida et al., 1999; Gomes et al., 2004; Hahn & Malhotra, 2005 ) What about collisional evolution in this scenario? Was collisional evolution ever efficient enough to deplete the mass of the belt to present estimates? Collisional evolution of TNOs and the migration of Neptune A: Present position and orbital elements. B: Present position, but initially “cold” (i=3º, e=0.01). C: Disk between 20 and 35 AU, “cold”. D: Disk initially as in C, migrating and “heating” up to present values. 4 different evolving scenarios

Results

M 0= 10 M T ABCD M f (M T ) slope N(D>2500 km) D tr (km)~120~150~160 M 0= 30 M T ABCD M f (M T ) slope N(D>2500 km) D tr (km)~100~120~130 A: Present position and orbital elements. B: Present position, but initially “cold” (i=3º, e=0.01). C: Disk between 20 and 35 AU, “cold”. D: Disk initially as in C, migrating and “heating” up.

Preliminary Conclusions Main features are almost independent on different initial distributions (with same M 0 ). Different strength scaling-laws imply only slight variations. Change in the power-law distribution around km. M reduces quickly (~100 Myr) to ½ of its initial value. Collisional evolution, under different initial conditions, may only be responsible for ~65-75% mass depletion: Other mechanisms are required to get actual mass.

To be continued... Estimate gravitational aggregate (rubble-piles) ratios. Introduce Neptune migration in a consistent way. Re-do simulations with orbital elements from the CFEPS. Introduce more realistic physics for low velocity collisions....

Universidad de Alicante. Alicante (Spain) Modelling the populations of Trans-Neptunian Objects Adriano Campo Bagatin, Paula G. Beneavidez Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal

Results

Introduction Asteroid Population Intrinsic ProbabilityImpact Velocity ( km/s ) Reference Main Belt2.19 – – 7.69 Farinella and Davis (1992) Main Belt Yoshikawa and Nakamura (1994) Main Belt Bottke et al. (1994) Main Belt Vedder (1998) Trojans (L 4 )6.37 – – 4.97 Marzari et al. (1996) Trojans (L 4 )7.12 – Dell’Oro et al. (1998) Trojans (L 5 )5.20 – – 4.99 Marzari et al. (1996) Trojans (L 5 )6.50 – Dell’Oro et al. (1998) Hildas2.21 – Dahlgreen (1998) TNOs Davis and Farinella (1997)

Observables Size distributions: The Trans-Neptunian Objects Bernstein et al. (2004)

Collisional evolution models CAVEAT: What about Q* for gravitational aggregates? And for rotating bodies? (See Housen et al., in 30’)

Observables Size distributions: The Trans-Neptunian Objects Bernstein et al. (2004)

Theoretical studies Pan and Sari (2005) Trans-Neptunian Objects “Break” confirmed by Davis and Farinella (1997) collisional model, Krivov et al. (2005) kinetic model. (Also Kenyon and Bromley, 2004) An analytical model

Collisional evolution models Campo Bagatin and Benavidez (POSTER SESSION P6.5) Trans-Neptunian Objects ZonesTransition size [km] Plutinos Classical Disk Scattered Disk Total

Open questions and conclusions The Trans-Neptunian region does not look collisionally relaxed (and will stay like this) above km sizes. (Similar behaviour seems to apply at least to Hildas.) We need un-biased data to extrapolate current distributions in a reliable way and compare models to. About TNOs

Open questions and conclusions How did the Scattered Disk (and the Centaur population?) form and evolve? Are TNOs larger than a transition diameter mostly pristine bodies? What fraction of km—size populations are gravitational aggregates? About TNOs Is (was) the Trans-Neptunian population beyond 50 AU also a collisional system? What was the initial mass of this part of the solar system?