ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The.

Slides:



Advertisements
Similar presentations
Control of Magnetic Chaos & Self-Organization John Sarff for MST Group CMSO General Meeting Madison, WI August 4-6, 2004.
Advertisements

ASIPP HT-7 belt limiter Houyang Guo, Sizhen Zhu and Jiangang Li Investigation of EAST Divertor Asymmetry in Plasma Detachment & Target Power Loading Using.
Cyclic MHD Instabilities Hartmut Zohm MPI für Plasmaphysik, EURATOM Association Seminar talk at the ‚Advanced Course‘ of EU PhD Network, Garching, September.
1 Recent Experimental Results on HL-2A HL-2A Team presented by X.T. Ding Southwestern Institute of Physics, Chengdu, China In collaboration with USTC,
1 J-W. Ahn a H.S. Han b, H.S. Kim c, J.S. Ko b, J.H. Lee d, J.G. Bak b, C.S. Chang e, D.L. Hillis a, Y.M. Jeon b, J.G. Kwak b, J.H. Lee b, Y. S. Na c,
ASIPP Lithium experiments on HT-7 and EAST tokamak G. Z. Zuo, J. S. Hu, Z.S, J. G. Li, EAST team Institute of Plasma Physics, Chinese Academy of Sciences,
HL-2A Southwestern Institute of Physics 1/15 Experimental Studies of ELMy H-mode on HL-2A Tokamak Y. Huang J.Q.Dong, L.W.Yan, X.T.Ding X.R.Duan, HL-2A.
R Sartori - page 1 20 th IAEA Conference – Vilamoura Scaling Studies of ELMy H-modes global and pedestal confinement at high triangularity in JET R Sartori.
March 26, 2008Janos Marki: ELM-induced divertor heat loads1/11 ELM-induced divertor heat loads on TCV J. Marki, R. A. Pitts and TCV Team 2008 Annual Meeting.
Physics of fusion power Lecture 8 : The tokamak continued.
Energy loss for grassy ELMs and effects of plasma rotation on the ELM characteristics in JT-60U N. Oyama 1), Y. Sakamoto 1), M. Takechi 1), A. Isayama.
A. HerrmannITPA - Toronto /19 Filaments in the SOL and their impact to the first wall EURATOM - IPP Association, Garching, Germany A. Herrmann,
Recent Results from the STOR-M Tokamak A.Hirose, M. Dreval, S. Elgriw, O. Mitarai(1), A. Pant, M. Peng(2), D. Rohraff, A.K. Singh(3), D. Trembach, C. Xiao.
H. Urano, H. Takenaga, T. Fujita, Y. Kamada, K. Kamiya, Y. Koide, N. Oyama, M. Yoshida and the JT-60 Team Japan Atomic Energy Agency JT-60U Tokamak: p.
6 th Japan-Korea Workshop on Theory and Simulation of Magnetic Fusion Plasmas Hyunsun Han, G. Park, Sumin Yi, and J.Y. Kim 3D MHD SIMULATIONS.
ASIPP Development of a new liquid lithium limiter with a re-filling system in HT-7 G. Z. Zuo, J. S. Hu, Z.S, J. G. Li,HT-7 team July 19-20, 2011 Institute.
H-mode characteristics close to L-H threshold power ITPA T&C and Pedestal meeting, October 09, Princeton Yves Martin 1, M.Greenwald, A.Hubbard, J.Hughes,
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
ASIPP Overview of EAST H-mode Plasma Liang Wang*, J. Li, B.N. Wan, H.Y. Guo, Y. Liang, G.S. Xu, L.Q. Hu for EAST Team & Collaborators Institute of Plasma.
L. Chen US TTF meeting, 2014 April 22-25, San Antonio, Texas 1 Study on Power Threshold of the L-I-H Transition on the EAST Superconducting Tokamak L.
1 Modeling of EAST Divertor S. Zhu Institute of Plasma Physics, Chinese Academy of Sciences.
The study of MARFE during long pulse discharges in the HT-7 tokamak W.Gao, X.Gao, M.Asif, Z.W.Wu, B.L.Ling, and J.G.Li Institute of Plasma Physics, Chinese.
Physics of fusion power Lecture 10: tokamak – continued.
1 Results and analysis of Gas Puff Imaging experiments in NSTX: turbulence, L-H transitions, ELMs and other phenomena R.J. Maqueda Nova Photonics S.J.
Characterization of core and edge turbulence in L- and H-mode Alcator C-Mod plasmas Outline: Alcator C-Mod tokamak Fluctuation diagnostics Low to high.
High  p experiments in JET and access to Type II/grassy ELMs G Saibene and JET TF S1 and TF S2 contributors Special thanks to to Drs Y Kamada and N Oyama.
1 Max-Planck-Institut für Plasmaphysik 10th ITPA meeting on SOL/Divertor Physics, 8/1/08, Avila ELM resolved measurements of W sputtering MPI für Plasmaphysik.
EAST Data processing of divertor probes on EAST Jun Wang, Jiafeng Chang, Guosheng Xu, Wei Zhang, Tingfeng Ming, Siye Ding Institute of Plasma Physics,
1 Instabilities in the Long Pulse Discharges on the HT-7 X.Gao and HT-7 Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei,
Recent Results of KSTAR
Advances In High Harmonic Fast Wave Heating of NSTX H-mode Plasmas P. M. Ryan, J-W Ahn, G. Chen, D. L. Green, E. F. Jaeger, R. Maingi, J. B. Wilgen - Oak.
ASIPP Long pulse and high power LHCD plasmas on HT-7 Xu Qiang.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
1) Disruption heat loading 2) Progress on time-dependent modeling C. Kessel, PPPL ARIES Project Meeting, Bethesda, MD, 4/4/2011.
EAST ASIPP ICR-Wall conditioning in EAST J.S Hu, J.G Li and EAST Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei, Anhui.
MHD Suppression with Modulated LHW on HT-7 Superconducting Tokamak* Support by National Natural Science Fund of China No J.S.Mao, J.R.Luo, B.Shen,
Measurement of toroidal rotation velocity profiles in KSTAR S. G. Lee, Y. J. Shi, J. W. Yoo, J. Seol, J. G. Bak, Y. U. Nam, Y. S. Kim, M. Bitter, K. Hill.
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
U NIVERSITY OF S CIENCE AND T ECHNOLOGY OF C HINA CAS K EY L ABORATORY OF B ASIC P LASMA P HYSICS Recent experimental results of zonal flows in edge tokamak.
Session I-B – Overview Talks Lithium in Magnetic Confinement Experiments S. MirnovLi collection experiments on T-11M and T-10 in framework of Li closed.
EFDA EUROPEAN FUSION DEVELOPMENT AGREEMENT Task Force S1 J.Ongena 19th IAEA Fusion Energy Conference, Lyon Towards the realization on JET of an.
Active Control of MHDinstabilitiy 2002/11/19 S.Ohdachi et.al. Sawtooth-like phenomena in LHD S. Ohdachi, S.Yamamoto, K. Toi, K. Y.Watanabe, S.Sakakibara,
JT-60U -1- Access to High  p (advanced inductive) and Reversed Shear (steady state) plasmas in JT-60U S. Ide for the JT-60 Team Japan Atomic Energy Agency.
PERSISTENT SURVEILLANCE FOR PIPELINE PROTECTION AND THREAT INTERDICTION International Plan for ELM Control Studies Presented by M.R. Wade (for A. Leonard)
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
Work with TSC Yong Guo. Introduction Non-inductive current for NSTX TSC model for EAST Simulation for EAST experiment Voltage second consumption for different.
1 L.W. Yan, Overview on HL-2A, 23rd IAEA FEC, Oct. 2010, Daejeon, Republic of Korea HL-2A 2 nd Asia-Pacific Transport Working Group Meeting ELM mitigation.
MCZ Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2,
ELM propagation in Low- and High-field-side SOLs on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga 1), N.Oyama 1), S.Takamura.
1 EAST Recent Progress on Long Pulse Divertor Operation in EAST H.Y. Guo, J. Li, G.-N. Luo Z.W. Wu, X. Gao, S. Zhu and the EAST Team 19 th PSI Conference.
Integrated Simulation of ELM Energy Loss Determined by Pedestal MHD and SOL Transport N. Hayashi, T. Takizuka, T. Ozeki, N. Aiba, N. Oyama JAEA Naka TH/4-2.
Dependence of Pedestal Structure on Ip and Bt A. Diallo, R. Maingi, S. Zweben, B.P. LeBlanc, B. Stratton, J. Menard, S. Gerhardt, J. Canick, A. McClean,
Enhanced D  H-mode on Alcator C-Mod presented by J A Snipes with major contributions from M Greenwald, A E Hubbard, D Mossessian, and the Alcator C-Mod.
ELM propagation and fluctuations characteristics in H- and L-mode SOL plasmas on JT-60U Nobuyuki Asakura 1) N.Ohno 2), H.Kawashima 1), H.Miyoshi 3), G.Matsunaga.
Fast response of the divertor plasma and PWI at ELMs in JT-60U 1. Temporal evolutions of electron temperature, density and carbon flux at ELMs (outer divertor)
Page 1 Alberto Loarte- NSTX Research Forum st - 3 rd December 2009  ELM control by RMP is foreseen in ITER to suppress or reduce size of ELM energy.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
Pedestal Characterization and Stability of Small-ELM Regimes in NSTX* A. Sontag 1, J. Canik 1, R. Maingi 1, J. Manickam 2, P. Snyder 3, R. Bell 2, S. Gerhardt.
Radiation divertor experiments in the HL-2A tokamak L.W. Yan, W.Y. Hong, M.X. Wang, J. Cheng, J. Qian, Y.D. Pan, Y. Zhou, W. Li, K.J. Zhao, Z. Cao, Q.W.
Current Drive Experiments with Oscillating Toroidal Flux in HT-7 Superconducting Tokamak J.S.Mao, P. Phillips 1, J.R.Luo, J.Y.Zhao, Q.L.Wu, Z.W.Wu, J.G.Li,
Fast 2-D Tangential Imaging of Edge Turbulence: Neon Mantle (draft XP) R. J. Maqueda, S. J. Zweben, J. Strachan C. Bush, D. Stutman, V. Soukhanovskii Goal:
HT-7 Proposal of the investigation on the m=1 mode oscillations in LHCD Plasmas on HT-7 Exp2005 ASIPP Youwen Sun, Baonian Wan and the MHD Team Institute.
NSTX S. A. Sabbagh XP407: Passive Stabilization Physics of the RWM in High  N ST Plasmas – 4/13/04  Goals  Define RWM stability boundary in (V , 
1 V.A. Soukhanovskii/IAEA-FEC/Oct Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D by V.A. Soukhanovskii 1, with S.L. Allen.
L.R. Baylor 1, N. Commaux 1, T.C. Jernigan 1, S.J. Meitner 1, N. H. Brooks 2, S. K. Combs 1, T.E. Evans 2, M. E. Fenstermacher 3, R. C. Isler 1, C. J.
Features of Divertor Plasmas in W7-AS
LH Generated Hot Spots on the JET Divertor
No ELM, Small ELM and Large ELM Strawman Scenarios
Presentation transcript:

ASIPP Characteristics of edge localized modes in the superconducting tokamak EAST M. Jiang Institute of Plasma Physics Chinese Academy of Sciences The 1 st APTWG meeting, June 2011, NIFS, Japan

ASIPP Outline I.H-mode access on EAST II. ELMs behavior  ELMs crash  Classifications of ELMs  The effects in divertor plasmas  Statistical analysis of ELMs frequency  Control of ELMs by argon puffing III. Summary 2

ASIPP Outline I.H-mode access on EAST II. ELMs behavior  ELMs crash  Classifications of ELMs  The effects in divertor plasmas  Statistical analysis of ELMs frequency  Control of ELMs by argon puffing III. Summary 3

ASIPP H-mode access on EAST EAST parameters : Major radius : R 0 = 1.9 m Minor radius : a = 0.5 m Toroidal field : B t = 3.5 T Elongation :  = 2 Triangularity :  = H-mode shots so far Configurations: DN or unbalanced DN, LSN First L-H transition during Ip flat top, ramp-up and ramp- down 4

ASIPP Parameters at L-H : B t = 1.4~2 T I p = 0.4~0.8 MA n e = 1.9~3.4  m  3 P LHW = 0.5~1.1 MW P ICRF < 0.5 MW S A = 38~42 m 2  = 1.64~1.94  low = 0.45~0.58 q 95 = 2.7~5.0 H-mode access on EAST EAST shot

ASIPP Outline I.H-mode access on EAST II. ELMs behavior  ELMs crash  Classifications of ELMs  The effects in divertor plasmas  Statistical analysis of ELMs frequency  Control of ELMs by argon puffing III. Summary 6

ASIPP EAST shot The formation of pedestal was confirmed by a sharp rise in XUV at plasma edge. During ELMs, pressure gradient reduced. Between ELMs, it steepens, but is far from the steepness of the ELM- free period reaches MHD instability transport increase pedestal expels particles drops significantly and finally “avalanche model ” ELMs crash ELM and Pedestal structure 7

ASIPP Classifications of ELMs in EAST 1. Type III Most of ELMs on EAST are type III. They usually appeared at heating powers close to the threshold power. A coherent magnetic precursor oscillation was observed on magnetic and electrostatic probes. The frequency of ELMs precursor decreases from 130kHz to 60kHz within 0.4ms. 8 EAST shot D  [a.u.] Mirnov Time [s]

ASIPP Classifications of ELMs on EAST 2. Type I like  H mode was sustained by 0.3 MW as a result of the hysteresis effect.  Energy loss > 5%  deposited energy on divertor plates >3kJ  The heat load pulses on the outer target plates increase significantly and reach a peak heat load of 4MW/m 2. 9

ASIPP Classifications of ELMs on EAST 3. Compound ELM An initial MHD instability followed by a transient L-phase 10 EAST shot Time [s] D  [a.u.] Mirnov

ASIPP Inner target X-point Ionization region High density Not detached at the inner target Classifications of ELMs on EAST 4. Negative D  spikes near X-point 14

ASIPP Classifications of ELMs on EAST 5. quasi-periodic oscillations 6. No evident L-H transition Before L-H, quasi-periodic oscillation exists. It occurred in almost all H-mode discharge shots 12 EAST shot EAST shot Time [s] Time [s]

ASIPP 7. Strange ELM 8. Mossy ELM Classifications of ELMs on EAST Strange ELMs occurred at large current Small ELMs, so called “mossy ELM” 13 EAST shot EAST shot 33049

ASIPP ELM average heat load ~ 2MW/m 2 IR CCD camera, 20 ms time resolution Type III ELMs 14

ASIPP In-out asymmetry in target heat load LSN Type III ELMs LSN, dR sep =  1 cm Inner > Outer IR CCD data DN Type III ELMs DN, dR sep = 0 cm Outer > Inner 15

ASIPP Energy loss by ELM  W/W = 1~2% Target probes LSN & DN 16

ASIPP Statistical analysis for frequencies Shot no.Ip (kA)B T (T)q 95 f ELM (kHz) q 95 indicates the current profile, which dominates kink mode. Kink mode and ballooning mode drive ELM. q 95, the current density and pressure gradient will be in the peeling-ballooning mode stable region. 17

ASIPP ELM control by Argon seeding  Argon gas injected from lower outer target at a speed of 4  particles/s  ELM frequency rises  ELM amplitude decreases  P rad didn’t increase  P loss increased  W dia decreased  Effective for shielding impurity 18

ASIPP Outline I.H-mode access on EAST II. ELMs behavior  ELMs crash  Classifications of ELMs  The effects in divertor plasmas  Statistical analysis of ELMs frequency  Control of ELMs by argon puffing III. Summary 19

ASIPP Summary Type III ELMy H-mode has been obtained with low LHW power and lithium evaporation and real-time Li powder injection in EAST. Different kinds of ELMs have been observed in EAST with heating of LHW ELMs frequency is in the range of several hundred Hz, and decreases with q 95 ELMs behavior can be controlled by puffing gas 20