Optimal auction design Roger Myerson Mathematics of Operations research 1981.

Slides:



Advertisements
Similar presentations
(Single-item) auctions Vincent Conitzer v() = $5 v() = $3.
Advertisements

Network Economics -- Lecture 4: Auctions and applications Patrick Loiseau EURECOM Fall 2012.
6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Blackbox Reductions from Mechanisms to Algorithms.
Class 4 – Some applications of revenue equivalence
On Optimal Single-Item Auctions George Pierrakos UC Berkeley based on joint works with: Constantinos Daskalakis, Ilias Diakonikolas, Christos Papadimitriou,
Prior-free auctions of digital goods Elias Koutsoupias University of Oxford.
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
CPS Bayesian games and their use in auctions Vincent Conitzer
Mechanism Design, Machine Learning, and Pricing Problems Maria-Florina Balcan.
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
An Approximate Truthful Mechanism for Combinatorial Auctions An Internet Mathematics paper by Aaron Archer, Christos Papadimitriou, Kunal Talwar and Éva.
Game Theory in Wireless and Communication Networks: Theory, Models, and Applications Lecture 6 Auction Theory Zhu Han, Dusit Niyato, Walid Saad, Tamer.
Yang Cai Sep 10, An overview of today’s class Case Study: Sponsored Search Auction Myerson’s Lemma Back to Sponsored Search Auction.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Sep. 8, 2014 Lirong Xia Introduction to MD (mooncake design or mechanism design)
Part 1: Optimal Multi-Item Auctions Constantinos Daskalakis EECS, MIT Reference: Yang Cai, Constantinos Daskalakis and Matt Weinberg: An Algorithmic Characterization.
Yang Cai Oct 15, Interim Allocation rule aka. “REDUCED FORM” : Variables: Interim Allocation rule aka. “REDUCED FORM” : New Decision Variables j.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
1. problem set 12 from Binmore’s Fun and Games. p.564 Ex. 41 p.565 Ex. 42.
Yang Cai Sep 17, An overview of today’s class Expected Revenue = Expected Virtual Welfare 2 Uniform [0,1] Bidders Example Optimal Auction.
Algorithmic Applications of Game Theory Lecture 8 1.
Mechanism Design and the VCG mechanism The concept of a “mechanism”. A general (abstract) solution for welfare maximization: the VCG mechanism. –This is.
Mechanism Design and Auctions Jun Shu EECS228a, Fall 2002 UC Berkeley.
SECOND PART: Algorithmic Mechanism Design. Mechanism Design MD is a subfield of economic theory It has a engineering perspective Designs economic mechanisms.
Mechanisms for a Spatially Distributed Market Moshe Babaioff, Noam Nisan and Elan Pavlov School of Computer Science and Engineering Hebrew University of.
Week 10 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Exchanges = markets with many buyers and many sellers Let’s consider a 1-item 1-unit exchange first.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Auction Theory Class 2 – Revenue equivalence 1. This class: revenue Revenue in auctions – Connection to order statistics The revelation principle The.
Yang Cai Sep 8, An overview of the class Broad View: Mechanism Design and Auctions First Price Auction Second Price/Vickrey Auction Case Study:
CPS 173 Mechanism design Vincent Conitzer
Sequences of Take-It-or-Leave-it Offers: Near-Optimal Auctions Without Full Valuation Revelation Tuomas Sandholm and Andrew Gilpin Carnegie Mellon University.
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
More on Social choice and implementations 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A Using slides by Uri.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 21.
Auction Theory תכנון מכרזים ומכירות פומביות Topic 7 – VCG mechanisms 1.
Yang Cai Oct 08, An overview of today’s class Basic LP Formulation for Multiple Bidders Succinct LP: Reduced Form of an Auction The Structure of.
Chapter 4 Bayesian Approximation By: Yotam Eliraz & Gilad Shohat Based on Chapter 4 on Jason Hartline’s book Seminar in Auctions and Mechanism.
Topic 2: Designing the “optimal auction” Reminder of previous classes: Discussed 1st price and 2nd price auctions. Found equilibrium strategies. Saw that.
Regret Minimizing Equilibria of Games with Strict Type Uncertainty Stony Brook Conference on Game Theory Nathanaël Hyafil and Craig Boutilier Department.
Optimal mechanisms (part 2) seminar in auctions & mechanism design Presentor : orel levy.
Yang Cai Oct 06, An overview of today’s class Unit-Demand Pricing (cont’d) Multi-bidder Multi-item Setting Basic LP formulation.
Automated Mechanism Design Tuomas Sandholm Presented by Dimitri Mostinski November 17, 2004.
Mechanism Design II CS 886:Electronic Market Design Sept 27, 2004.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Combinatorial Auction. A single item auction t 1 =10 t 2 =12 t 3 =7 r 1 =11 r 2 =10 Social-choice function: the winner should be the guy having in mind.
Advanced Subjects in GT Prepared by Rina Talisman Introduction Revenue Equivalence The Optimal Auction (Myerson 1981) Auctions.
1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAA A AA A.
Comp/Math 553: Algorithmic Game Theory Lecture 10
Comp/Math 553: Algorithmic Game Theory Lecture 11
Bayesian games and their use in auctions
Comp/Math 553: Algorithmic Game Theory Lecture 08
CPS Mechanism design Michael Albert and Vincent Conitzer
Comp/Math 553: Algorithmic Game Theory Lecture 09
Implementation in Bayes-Nash equilibrium
Comp/Math 553: Algorithmic Game Theory Lecture 13
Implementation in Bayes-Nash equilibrium
Economics and Computation Week #13 Revenue of single Item auctions
Vincent Conitzer Mechanism design Vincent Conitzer
Vincent Conitzer CPS 173 Mechanism design Vincent Conitzer
Auctions Lirong Xia. Auctions Lirong Xia Sealed-Bid Auction One item A set of bidders 1,…,n bidder j’s true value vj bid profile b = (b1,…,bn) A sealed-bid.
Implementation in Bayes-Nash equilibrium
Information, Incentives, and Mechanism Design
Auction Theory תכנון מכרזים ומכירות פומביות
Vincent Conitzer CPS Mechanism design Vincent Conitzer
CPS Bayesian games and their use in auctions
Class 2 – Revenue equivalence
Presentation transcript:

Optimal auction design Roger Myerson Mathematics of Operations research 1981

Auctions What is an auction? – Agreement between seller and bidders Who gets the item? How much does everyone pay?

Optimal auction design problem The seller has a single item to sale She doesn’t know how bidders value the item She wants to make as much money as possible

The setting A seller has 1 item for sale, which she values at 0 A set of bidders: bidder i’s valuation (type) t i towards the item is private info Others view t i as a random variable in [a i, b i ] drawn from F i (t i ) An outcome: a probability p i of allocation and a payment x i, for each i – Who gets the item at what price Bidder’s utility: u i = p i t i -x i Seller’s goal: maximizes her expected utility/revenue thru a mechanism Bidders maximize their expected utility 4

Auction mechanisms A mechanism – Specifies a set A i of actions for each bidder i – Outcome function: a 1 ×…a n  outcome A bidder i’s strategy s i (): [a i, b i ]  A i Bidders’ strategies forms a (Bayes) Nash equilibrium Infinite space: action can be anything! 5

Revelation principle Direct revelation mechanisms – Everyone’s action is to report a valuation (A i =[a i,b i ]) – Being truthful is an equilibrium (incentive compatible) Revelation principle – It is WLOG to focus on direct revelation mechanism – In other words, anything outcome implemented by a mechanism can also be implemented by a direct revelation mechanism

Proof

The seller’s problem Design direct revelation mechanism (p(t),x(t)), so as to maximize E t (∑ i x i (t)) where (t=(t 1,…t n )) Subject to – Incentive compatibility (IC) truthful is NE – Individual rationality (IR) participation – Resource feasibility (RF) Seller should never

Analysis: constraints simplification Interim allocation probability Lemma: Constraints simplification – IC, IR and RF iff

Proof

Analysis: objective simplification lemma Subject to RF and Q being increasing and

Proof

Optimal auction: the regular case Virtual value: t i -(1-F i (t i ))/f i (t i ) Regularity: t i -(1-F i (t i ))/f i (t i ) is increasing in t i – So that Q is increasing (last constraint satisfied) Allocation rule: give the item to the highest non- negative virtual value Payment rule: max {0, Inverse of 2 nd highest VV }

Summary Upon receiving bids t i from each bidder i The seller calculates VV: t i -(1-F i (t i ))/f i (t i ) The seller gives the item to j who has the highest non-negative VV The seller charges j the amount that would tie him to the 2 nd highest VV If all VV are negative, the seller keeps the item

Discussion: bidders may have different virtual valuation functions 16 Actual valuation ranking Virtual valuation ranking winner is 2 t1t1 t2t2 t3t3 ~t 1 ~t 3 ~t 2

Discussion: symmetric bidders Assume F i =F j (symmetric bidders) Every bidder has the same virtual valuation function Myerson auction is 2 nd -price auction with a reserve price 17

Discussion: F i =F j 18 Actual valuation ranking Virtual valuation ranking winner is 3 0 reserve t1t1 t2t2 t3t3 ~t 1 ~t 2 ~t 3

Exercise: envelope theorem [Milgron, ]

Recent progresses Optimal auction – Single item setting (Myerson) – Multiple identical item (Maskin&Riley) – Combinatorial items with single parameter (Levin) – Two items with discrete distribution (Armstrong) Approximate optimal auction – 2 nd -price auction 2-approximates Myerson (Hartline and Roughgarden, EC-09) – VCG 2-approximates Levin (Tang and Sandholm, IJCAI-11) – One bidder, two item: Separate Myerson 2-approximates optimal (Hart-Nisan, EC-12) Unfortunately: even for 1 bidder, 2 item case, the optimal auction is unknown! Two sellers?