1 WHT 2 Degree Field Forward Cass, Prime Focus correctors, multi-object spectrographs David King Institute of Astronomy University of Cambridge Science.

Slides:



Advertisements
Similar presentations
Introduction. OzPoz is the fiber positioner for FLAMES, a multi-object spectroscopic facility on the VLT. It can feed light from as many as 140 objects.
Advertisements

HIRES Technical concept and design E. Oliva, HIRES meeting, Brera (Milan, Italy)1.
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
SALT RSS-NIR MID-TERM REVIEW MAY 20 & 21, 2009 ANALYTIC OPTICS KENNETH NORDSIECK UNIVERSITY OF WISCONSIN.
PSI: Polarimetric Spectroscopic Imager - A Simple, High Efficiency, High Resolution Spectro-­Polarimeter Samuel C. Barden Frank Hill.
Spectral Resolution and Spectrometers
Echelle Spectroscopy Dr Ray Stathakis, AAO. What is it? n Echelle spectroscopy is used to observe single objects at high spectral detail. n The spectrum.
DESpec spectrographs Jennifer Marshall Darren DePoy Texas A&M University.
1 Fingerprints in Sunlight Understanding Spectroscopy Stanford University Solar Center.
Optical Astronomy Imaging Chain: Telescopes & CCDs.
Spectral Resolution and Spectrometers A Brief Guide to Understanding and Obtaining the Proper Resolution of the 785 Raman System.
Spectroscopic Reference Design Options D. L. DePoy Texas A&M University.
 Michael J. Sholl 1, Mark R. Ackerman 2, Chris Bebek 3, Robert Besuner 1, Arjun Dey 4, Jerry Edelstein 1, Patrick Jelinsky 1, Michael L. Lampton 1, Michael.
AURA New Initiatives Office S.C. Barden, M. Liang, K.H. Hinkle, C.F.W. Harmer, R.R. Joyce (NOAO/NIO) September 17, 2001 Instrumentation Concepts for the.
An Echidna-style positioner for DESpec
IRMS Optical Subsystem Review. The Charter Confirm that the MOSFIRE design is a feasible baseline for IRMS (yes) Verify that the MOSFIRE design can achieve.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
An Echidna-style positioner for DESpec Will Saunders 8 March 2011.
Tibor Agócs Purpose of the talk  Wide-field spectroscopy/imaging is the driver  MOS  IFU  NB/WB imager  Current FOV is 40 arcmin – it’s.
Astronomical Spectroscopy
Spectroscopy Techniques and Projects at 1.2-m UK Schmidt Telescope
Astronomical Instrumentation Often, astronomers use additional optics between the telescope optics and their detectors. This is called the instrumentation.
2.4m Telescope Group Yunnan Observatory of CAS Status of LiJET Project & The Coude Echelle Spectrograph for the Lijang 1.8m Telescope China-Japan Collaboration.
Visual Angle How large an object appears, and how much detail we can see on it, depends on the size of the image it makes on the retina. This, in turns,
Prime Focus Option (Ming Liang) Actuator Intro/Overview/Status Prime focus slides from M. Liang (NOAO) M. Sholl University of California at Berkeley Space.
August 2 and 3, 2010 KOSMOS Design Considerations Jay Elias.
SALT Technology Development Lisa Crause India-South Africa Astronomy Workshop – SAAO 6 August 2012.
Engineering: NAHUAL Ireland Acquisition Camera, Focal Plane Mechanisms and Layout Tully Peacocke, National University of Ireland Maynooth Carlos del Burgo,
Peter Gillingham, Stan Miziarski, and Urs Klauser (Anglo-Australian Observatory) Figure 1 View of OzPoz showing the front of the focal late in observig.
FMOS Overview Oxford, 22nd June FMOS: Fibre Multi-Object Spectrograph Logical successor to 2dF Logical successor to 2dF Wide-Field IR spectroscopy.
The Mid-Infrared Instrument (MIRI) Medium Resolution Spectrometer for JWST Martyn Wells MIRI EC & UKATC.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
Wilga 2007 π of the Sky Full π system and simulation Janusz Użycki Faculty of Physics Warsaw University of Technology.
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
High Resolution Echelle Spectrograph for Chinese Weihai 1m Telescope. Leiwang, Yongtian Zhu, Zhongwen Hu Nanjing institute of Astronomical Optics Technology.
15 October Observational Astronomy Direct imaging Photometry Kitchin pp ,
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
Astronomical Spectroscopy Notes from Richard Gray, Appalachian State, and D. J. Schroeder 1974 in “Methods of Experimental Physics, Vol. 12-Part A Optical.
Multiplexed High Res Spectroscopy at Keck – J. Cohen (PI), H. Epps (Optical Design), M. Rich (Project Scientist) Keck instruments for optical spectroscopy.
Multi-slit spectroscopy In sky-noise dominated conditions (most interesting!) the use of slits is essential: eg: Faint object, extra-galactic, surveys:
An IFU for IFOSC on IUCAA 2m Telescope
INSTRUMENTATION/ OID / L. Pasquini/ 1 ____________________________________________________________ FLAMES COORDINATION AND INTERFACES. FIELD CORRECTOR.
JGR 19 Apr Basics of Spectroscopy Gordon Robertson (University of Sydney)
NORDFORSK Summer School, La Palma, June-July 2006 NOT: Telescope and Instrumentation Michal I. Andersen & Heidi Korhonen Astrophysikalisches Institut Potsdam.
The Study of IFU for the Li Jiang 2.4m Telescope ZHANG Jujia 张居甲 Yun Nan Astronomical Observatory. CAS Sino-French IFU Workshop Nov Li Jiang.
WFIRST IFU -- Preliminary “existence proof” Qian Gong & Dave Content GSFC optics branch, Code 551.
The FMOS Facility for the SUBARU telescope Gavin Dalton Oxford/RAL.
The Prime Focus Imaging Spectrograph Design and Capabilities
Grisms Michael Sholl Space Sciences Laboratory 29 March 2003 Practical implementation for SNAP.
Oct 26, 2007SALT Workshop UKZN1 Robert Stobie Prime Focus Imaging Spectrograph Science Rationale Modes –Fabry-Perot Spectral Imaging –Grating Spectroscopy;
FELT 1 Study of the capability and configuration of a fixed mirror Extremely Large Telescope (FELT) Low cost path to large telescope Primary concern is.
POSITIONER SPECIFICATIONS 2250 fibres (c.f. ~400 for FMOS-Echidna) Field diameter ~320mm (c.f. ~150mm for FMOS-Echidna) Fibre core diameter 60µm Spherical.
The 6dF Galaxy Survey - The First Year Will Saunders Anglo-Australian Observatory.
Science with Giant Telescopes - Jun 15-18, Instrument Concepts InstrumentFunction range (microns) ResolutionFOV GMACSOptical Multi-Object Spectrometer.
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
Goals for HETDEX Determine equation of state of Universe and evolutionary history for dark energy from 0
Visible Spectro-polarimeter (ViSP) Conceptual Design David Elmore HAO/NCAR
F. Pepe Observatoire de Genève Optical astronomical spectroscopy at the VLT (Part 2)
The Prime Focus Imaging Spectrograph for the Southern African Large Telescope: Operational Modes Chip Kobulnicky – Instrument Scientist, University of.
1 GREAT spectrograph and plugplate discussion Ian Parry Institute of Astronomy Cambridge University UK.
Integral Field Spectrograph Eric Prieto LAM. How to do 3D spectroscopy.
WEAVE Spectrograph.
NIRSpec Time Series Observations
“Whether they ever find life there or not, I think Jupiter should be considered an enemy planet.” Jack Handy HW2 is due on Wednesday. How’s that going?
KOSMOS Design Considerations
ESAC 2017 JWST Workshop JWST User Documentation Hands on experience
THE LHIRES-III SPECTROGRAPH
Introduction to Spectroscopy
Overview Instrument Role Science Niches Consortium science
Observational Astronomy
Presentation transcript:

1 WHT 2 Degree Field Forward Cass, Prime Focus correctors, multi-object spectrographs David King Institute of Astronomy University of Cambridge Science with the WHT London, 23 March 2010

2 Gaia Research for European Astronomy Training network/Gaia Chemo-Dynamical Surveys GREAT/GCDS aims to tackle some of the biggest galactic science challenges through the study of the chemical and dynamical properties of >10 6 stars. Go to Requires: –Large survey on 8m class telescopes –Large complimentary survey on 4m class telescopes –Development of suitable 4m class instruments for the northern and southern hemispheres to support these surveys > Large field (~2 degree) fibre-fed multi-object spectrographs covering R~

3 The Forward Cass option “standard” way of accessing a wide (>1.5 degree field is to do so at prime focus alternative, and possibly simpler solution is to use a forward Cass configuration entails having a new ~f/7 secondary tried using a doublet then triplet restricted wavelength range nm

4 Forward Cass with doublet

5

6

7 Forward Cass with triplet

8

9

10 Prime focus option

11 Prime focus option

12 Prime focus option

13 Forward Cass/Prime trades both require –multi-element correctors to get large field – atmospheric dispersion correction – not included in these preliminary models –one aspheric surface in each model larger elements in forward Cass (1060mm vs. 900mm ) new secondary (1200mm diameter) substantial mechanical redesign Prime corrector the way forward? – see Tibor’s presentation

14 Spectrograph parameters Assumptions: corrected WHT prime focus R = 5000, 20,000, 30,000, 40,000 f/2.65 collimator f/1.4 camera 8Kx8K CCD, 15  m pixels arcsecond fibres

15 GA surveys SurveyGALR-BGALR-RGAHR-1GAHR-2GAHR-3 GALR B+R start (nm) end (nm) Spectral R Spectrum Length (pixels) Min beam dia (mm)

16 F/1.4 camera Fibres are 1 arcsec in diam = 57 microns, cwl = 625nm 235mm diameter beam Achieving R=20,000 with one VPH grating (WHT 4.2m) One 2166 l/mm VPHG. 350x240mm F/2.65 collimator 8192x8192 pixels CCD 15um pixels 123x123mm

17 F/1.4 camera Fibres are 1 arcsec in diam = 57 microns, cwl = 625nm 235mm diameter beam Achieving R=40,000 by using two VPH gratings in series (WHT 4.2m) Two 2166 l/mm VPHG. Each is 350x240mm F/2.65 collimator 8192x8192 pixels CCD 15um pixels 123x123mm

18 F/1.4 camera Fibres are 1 arcsec in diam = 57 microns, cwl = 850nm 235mm diameter beam Achieving R=5,000 with one VPH grating (WHT 4.2m) A 538 l/mm VPHG. 260x240mm F/2.65 collimator 8192x8192 pixels CCD 15um pixels 123x123mm

19 Information gathering power At R= nm – 885nm At R= nm – 680nm, e.g. Spectrograph can have up to 1250 fibres At R=40000 can in principle trade wavelength coverage against number of fibres. e.g. 300 fibres with 250nm of coverage.

20 F/2.65, 240mm beam reversed collimator. All the surfaces are spherical.

21 F/2.65, 240mm beam reversed collimator matrix spot diagram.

22 F/2.65, 240mm beam reversed collimator ensquared energy diagram.

23 F/ mm beam camera. Work in progress

24 f/ mm beam camera spot diagram

25 f/ mm beam camera ensquared energy diagram

26 Plugplates

27 Requirements-1 Science case requires ~1000 simultaneous spectra at optical wavelengths for discrete objects in a deg FOV on a 4m telescope with up to 5 fields per night. The large FOV, the large wavelength coverage and the high spectral resolution are best addressed by a fibre-fed MOS approach with one fibre per object.

28 Requirements-2 Field change time has to be relatively fast, < 5 minutes from the end of one exposure to the start of another one on a new field. Up to 1000  5=5,000 fibres have to be placed in a 24 hour cycle. Each fibre tip has to be placed accurately with 5 degrees of freedom - X, Y- object position - Z- focus - tip, tilt- pupil aiming

29 Possible plugplate solution –plugplate - a sheet of suitable material with accurately drilled holes receive fibres. –plugplate modules - configured off telescope. –exposures of ~2 hours - up to 5 pre-configured modules per night –a machine interchanges modules on the telescope during the night. –in each module the fibres are short (<1m) and the output ends are arranged in a fixed pattern (a fibre-optic connector).

30 Spectrographs PF corrector Permanently installed fibre run Interchangeable plugplate module A&G unit Telescope

31 Module interchanging At the end of an exposure the telescope moves to a low elevation where the module interchanger can access the module. The permanently installed part of the fibre connector is backed off from the connector half on the plugplate module. The used module is removed and the next one is put on. The new module is referenced to the telescope focal plane. The permanently installed part of the fibre connector then mates with the other half of the connector on the module. The telescope slews to the next target. This entire process is the same for all modules.

32 Module preparation facility a dedicated facility (at the telescope or elsewhere). plates are drilled on CNC machines. – up to 5000 holes in an 8 hour shift ( 4 machines if the time to drill one hole is 20 seconds.) The plates are non-metallic to reduce costs and reduce fitting tolerances? The fibres exchange by robots. –reconfigure 5000 fibres in an 8 hour shift (4 robots if the time to move one fibre is 20 seconds.) quality control machine to check and clean each module after preparation. bar-coding for module housekeeping. modules transported between telescope and preparation facility each day.

33 Next plugplate Previous plugplate with fibres inserted Robot that unplugs old plate and plugs new plate Multi-way fibre connector Plugplate module

34 Illustration of unplugging an plugging sequence that robot carries out to reconfigure a plugplate module Start Finish

35 Ferrule is fluted and tapered at tip to make insertion easier. Plugplate is non-metallic. These features significantly reduce tolerance on diameter of drilled holes. Ferrule details A ferrule must not fall out of a hole because it’s too big or get stuck in a hole because it’s too small.

36 Ferrule details

37 Advantages of plugplates The least possible positional constraints: no magnets or prisms or crossing fibres. No positioning mechanisms attached to fibres. This is fundamental for scientific versatility! Operation during the night is extremely simple. Very low risk of telescope time being lost. The interface with the spectrographs is simplified (no need for fibre selection mechanisms at the slit end). All 5 axes for fibre placement (X, Y, Z, tip, tilt) can be controlled if required.

38 Reliability Extra robots, modules and drilling machines to allow a routine maintenance program. When a fibre breaks, impacts on “sky” fibres so the surveys are not affected. When many fibres are broken in a module it is taken out of operation and repaired. spare robots and drilling machines so there are always enough operational to meet the survey needs. About 2,500 plates (2.5 million holes) have to be drilled. 500 nights of observing.

39 Conclusions Plugplates have minimal positioning constraints and are therefore the best solution scientifically for applications which require the very highest target densities. The time required to get started is short (compared to fully robotic fibre positioners) and the overall spend profile is not heavily weighted up-front. The scheme presented here requires no new technology. We should develop the idea further and establish an accurate cost to complete the surveys (i.e. include all capital and operational costs). Maybe using humans instead of robots is cheaper?