© Copyright 2008 ABB. All rights reserved. - 1 - 2/29/2008 Results-Driven Roadshow Cincinnati, 2008 Common Cures for Harmonics Larry Stanley RSE,Nashville,TN.

Slides:



Advertisements
Similar presentations
Copyright© Voltimum Experts – not to be reproduced without prior consent of Voltimum UK Voltimum Expert Topic – Power Harmonics.
Advertisements

Mike Thornton National Sales Manager
Ch8 Inverters (converting DC to AC)
INVERTERS (DC-AC Converters).
EEEB443 Control & Drives Controlled Rectifier DC Drives By
Siemens Building Technologies Building Technologies Variable Frequency Drives Harmonics Overview.
ECE Electric Drives Topic 6: Voltage-Fed Converters Spring 2004.
Chapter 4 DC to AC Conversion (INVERTER)
EMC in Electrical Power Systems Frithiof Jensen Power System Engineer November 12, 2013.
VARIABLE SPEED DRIVES HARMONIC EFFECTS & EFFECT OF USE WITH LONG CABLES (100 – 300m) Electric Motors & Drives ….OUR VISION, YOUR SOLUTION ……. TOGETHER.
2010 ASHRAE Rocky Mountain Chapter VFD Fundamentals April 16, 2010 Jeff Miller - ABB © ABB Month DD, YYYY | Slide 1 1.
POWER ELECTRONICS Multi-Step VSI vs GTO CSI. Power Electronics España S.L. © reserves the right to modify the content without prior notice 01 GTO CSI.
Dr. Ali M. Eltamaly King Saud University
7154 VFD Presentation #3 May 2002 Paul Weingartner.
ELECTRIC DRIVES Ion Boldea S.A.Nasar 1998 Electric Drives.
EXPERIMENTAL STUDY AND COMPARATIVE ANALYSIS OF TRANSFORMER HARMONIC BEHAVIOUR UNDER LINEAR AND NONLINEAR LOAD CONDITIONS.
Dry type transformers Zaragoza Traction application
Chapter 4 DC to AC Conversion (INVERTER)
AC Power Supplies Applications –Standby source for “critical” loads (computer) –Primary source when normal ac not available Uninterrupted Power Supply.
Parallel resonant dc-dc converter
ECE Electric Drives Topic 10: Cycloconverters.
Understanding of Harmonics in Power Distribution System
Three-Phase AC machines Three-Phase Cage Rotor Induction Motor – Electronic Methods of Starting and Speed Control Resource 4.
POWER SUPPILES LECTURE 20.
EKT214 - ANALOG ELECTRONIC CIRCUIT II
Power Electronics DC to AC Converters
LECTURE 9 INTRO TO POWER ELECTRONICS
Switch-Mode DC-AC Inverters
ISA Northern California Section, South Bay October 14, 2003 Craig Chidester
Introduction In recent years, harmonics are considered as one of the most essential problems in the industrial power distribution networks. The problem.
Power Electronics and Drives (Version ) Dr. Zainal Salam, UTM-JB 1 Chapter 3 DC to DC CONVERTER (CHOPPER) General Buck converter Boost converter.
CIRCUITS, DEVICES, AND APPLICATIONS Eng.Mohammed Alsumady
ET3380 Principles and Methods of Electric Power Conversion David Morrisson MS,MBA Week 1.
ECE Electric Drives Topic 10: Cycloconverters Spring 2004.
What is a Harmonic The typical definition for a harmonic is
7154 VFD Presentation #2 May 2002 Paul Weingartner.
Applied Harmonics Control of Harmonics
Voltimum Expert Topic – Power Harmonics. What are Harmonics? They are waveforms with frequencies that are multiples of the fundamental frequency (Typically.
Power Electronics 2 (H5CPE2) Dr Christian Klumpner Power Electronics, Machines and Control Group School of Electrical and Electronic Engineering, UoN Tower.
8-1 School of Electrical Systems Engineering ABD RAHIM 2008 EET421 Power Electronic Drives - DC to AC converter / Inverter Abdul Rahim Abdul Razak.
1- Harmonic Sources from Commercial Loads
Chapter 2 Harmonics and Interharmonics Theory
INVERTERS REFERENCE 1. Power Electronics-(CH-8) M.S. Jamil Asghar
7/08/2002PP.AFD.07 Harmonic Quality1 of 49 Yaskawa Electric America Harmonic Currents, Voltages and Your Building Power System.
7/15/2002PP.AFD.081 of 28 Power Quality Considerations When Applying Adjustable Frequency Drives Explanations and Various Countermeasures.
Mahesh M. Swamy Yaskawa America, Inc. PP.IEEE
Power supply.
Power Quality Issues Power Electronics Group.
DC Machine & Transformer
REVIEW OF CFL AND ITS HARMONIC IMPACT ON ELECTRICAL DISTRIBUTION SYSTEM Guide: Mr. Rijo Rajan, prepared by: Merin Lukose Lecturer, S7 EEE EEE department.
Effects of Harmonics on Capacitors Electrical System
High frequency Sine wave inverter
HARMONIC MITIGATION USING PASSIVE FILTERS
POWER ELECTRONICS & ITS APPLICATION
MEDIUM VOLTAGE APPLICATIONS.
Yaskawa Electric America on Variable Torque Loads
M.KARTHIK (10F41D4307) Under the esteemed guidance of
Analisis Sistem Kendali Industri
Harmonics can be reduced by using of line inductances (AC-chokes) or
AC to DC Converters Outline 2.1 Single-phase controlled rectifier
Wind turbine technology
Power System Harmonics
Dr. Unnikrishnan P.C. Professor, EEE
DC- AC CONVERTER-INVERTER
APPLICATIONS Reference: Textbook-Chapter 6,8 & 9 'Power Electronics',C
Power Electronic Drives - DC to AC converter / Inverter
UNIT-8 INVERTERS 11/27/2018.
Switch-Mode DC-AC Inverters
AC Drives Dr. Adel A. El-Samahy Department of Electrical Engineering University of Helwan.
FPGA Based Single Phase Motor Control Using Multistep Sine PWM Author Name1, Author Name2., Author Name3, (BE-Stream Name) Under the Guidance Of Guide.
Presentation transcript:

© Copyright 2008 ABB. All rights reserved /29/2008 Results-Driven Roadshow Cincinnati, 2008 Common Cures for Harmonics Larry Stanley RSE,Nashville,TN

© Copyright 2008 ABB Harmonics — What?

© Copyright 2008 ABB Non-linear loads draw non-sinusoidal current from a sinusoidal line (current doesn’t look like voltage) : Non-incandescent lighting Computers Uninterruptible power supplies Telecommunications equipment Copy machines Battery chargers Electronic variable speed drives Any load with a solid state AC to DC power converter Harmonics — What?

© Copyright 2008 ABB The Real World, 6- Pulse Drive PWM Drive Input Current

© Copyright 2008 ABB The Theory: Fundamental, 5 th and 7 th Harmonics Fundamental 5th 7th Components Summation

© Copyright 2008 ABB Harmonic Content, 6- Pulse Drive PWM Drive Harmonic Input Spectrum 5th 7th Fundamental 11th 13th

© Copyright 2008 ABB Harmonics — Why worry?

© Copyright 2008 ABB Harmonic Current Distortion — Added heating in transformers and cables, reduces available capacity May stimulate a PF correction resonance condition Excessive voltage Overheating of capacitors Tripping of protection equipment Shutdown / damage to electronic equipment May cause telephone or electronic interference Harmonics — Why worry?

© Copyright 2008 ABB Harmonic Voltage Distortion — Increased heating in motors and other electromagnetic equipment Noisy operation of electromagnetic equipment Malfunction of sensitive electronics Nuisance tripping of electronic circuit breakers Equipment downtime Premature component failures Failed transformers, motors and capacitors Compliance with codes or specifications Harmonics — Why worry? (cont.)

© Copyright 2008 ABB Harmonics, Important Terminology (definitions per IEEE ) Harmonic - A sinusoidal component of a periodic wave or quantity having a frequency that is an integral multiple of the fundamental frequency. Harmonic, characteristic - Those harmonics produced by semiconductor converter equipment in the course of normal operation. h = kq ± 1 k = any integer q = pulse number of the converter Point of common coupling (PCC) Def. 1 - “point of common coupling (PCC) with the consumer-utility interface.” (current harmonic emphasis) Def. 2 - “Within an industrial plant the point of common coupling is the point between the nonlinear load and other loads.” (voltage harmonic emphasis)

© Copyright 2008 ABB PCC Example

© Copyright 2008 ABB Harmonics, Important Terminology (cont.) I SC /I L - The ratio of the short-circuit current available at the point of common coupling, to the maximum fundamental load current. Total harmonic distortion (THD) or distortion factor - The ratio of the root-mean-square of the harmonic content to the root-mean-square value of the fundamental quantity, expressed as a percent of the fundamental. Total demand distortion (TDD) - The root-sum-square harmonic current distortion, in percent of the maximum demand load current (15 or 30 min demand).

© Copyright 2008 ABB Effect of Short Circuit Ratio on Harmonics I SC I L ~ 400 I SC I L ~ 8

© Copyright 2008 ABB Harmonics produced by an individual load are only important to the extent that they represent a significant portion of the total connected load (Harmonics are expressed as a percentage) Linear loads help reduce system harmonic levels (percentages) TDD (Total Demand Distortion) equals the THD (Total Harmonic Distortion) of the nonlinear load multiplied by the ratio of nonlinear load to the total (demand) load: Harmonics — A System Issue! Where TDD=TDD of the system THD NL =THD of the nonlinear loads NL=kVA of nonlinear load TL=kVA of total load (nonlinear + linear)

© Copyright 2008 ABB Harmonics — By the Numbers IEEE

© Copyright 2008 ABB Harmonics — By the Numbers (cont.) IEEE R SC

© Copyright 2008 ABB Harmonics — Will it be a problem?

© Copyright 2008 ABB Harmonic Voltage, Will it be a problem? THD (Voltage) will be acceptable (<5%) if the % drive load times the % impedance feeding the drive load is <3% %DriveLoad x %Impedance < 3% (Approximate rule of thumb for 6-pulse drives with 3% reactor, all other loads assumed to be linear) E.g. a 45% drive load fed from 6% impedance feeder bus: 45% x 6% = 2.7% 2.7% < 3%  Acceptable E.g. a 70% drive load fed from 5% impedance feeder bus: 70% x 5% = 3.5% 3.5% > 3%  Not Acceptable

© Copyright 2008 ABB Harmonic Current, Will it be a problem? THD (Current) on a network with a short circuit ratio <20 (20<50, 50<100, 100<1000) will be acceptable if the % drive load times 45% is <5% (<8%, <12%, <15%) %DriveLoad x 45% < 5% (R SC <20) %DriveLoad x 45% < 8% (R SC 20<50) %DriveLoad x 45% < 12% (R SC 50<100) %DriveLoad x 45% < 15% (R SC 100<1000) (Rule of thumb for 6-pulse drives with 3% reactor,, all other loads assumed to be linear) E.g. a network with a short circuit ratio of 35 has 15% drive load: 15% x 45% = 6.75% 6.75% < 8%  Acceptable E.g. a network with a short circuit ratio of 65 has 30% drive load: 30% x 45% = 13.5% 13.5% > 12%  Not Acceptable

© Copyright 2008 ABB Harmonics — What can I do?

© Copyright 2008 ABB Harmonics — What can I do? Reactors (Chokes) Passive Filters Harmonic Trap Hybrid High Pulse Count Rectification Active Filters Drive Front End Stand Alone

© Copyright 2008 ABB Reactors, AC Line or DC Link Different design techniques Equal harmonic reduction for same normalized % reactance Typical full load THD (current) at drive input terminals 28%  46% Existence not position is what is important

© Copyright 2008 ABB Reactor Effectiveness Current harmonic content (THD) at drive input terminals as a function of normalized % reactance and network short circuit ratio

© Copyright 2008 ABB Swinging Chokes Provide increased inductance at reduced current Reduce harmonics up to 30% more than traditional designs “Swing” portion of choke characteristic significantly improves harmonic performance at reduced loads

© Copyright 2008 ABB Swinging DC Link Choke Designed to reduce harmonics at full and partial loads Perfect for Variable Torque Centrifugal Loads Equivalent to 5% line reactor More inductance per volume/weight of material

© Copyright 2008 ABB Swinging Choke Vs. Fixed Choke

© Copyright 2008 ABB High Pulse Count Rectification Typical configurations are either 12 pulse or 18 pulse Phase shifting transformer is required Additional drive input bridges are needed Typical full load THD (current) at transformer primary 8%  12% (12 pulse), 4%  6% (18 pulse) Performance significantly reduced by line imbalance (voltage or phase) Excellent choice if stepdown transformer is already required

© Copyright 2008 ABB High Pulse Count Rectification (cont.) 6 pulse rectifier Transformer (if included) and cabling simple Current quite distorted I thd 32% to 48% with 3% reactor (depending on network impedance) DC/AC Transformer and cabling more complicated Current slightly distorted I thd 8% to 12% (depending on network impedance) 12 pulse rectifier 18 pulse rectifier DC/AC Transformer and cabling complicated Current wave form good I thd 4% to 6% (depending on network impedance)

© Copyright 2008 ABB Active Filter Front End with LCL Filter Active Filter Line Inverter (rectifier) removes low frequencies < 1kHz LCL Filter (passive filter) removes high frequencies >1 kHz. (Current and voltage) Full output voltage is available with 80% input voltage (400V In = 480V Out ) Full regenerative capability (ACS800-U11/-17) No transformer required Not affected by line imbalance LCL filter Line inverter (rectifier) Motor inverter Motor LL C M DC Link Drive

© Copyright 2008 ABB Beauty Instead of Beast IGBT line supply controls the current Sinusoidal line current Low distortion below switching frequency LCL Line filter removes high frequency distortion Cleans the waveform above switching frequency Diode supply

© Copyright 2008 ABB %THD (Voltage) = f(R SC ) R SC Impressive Numbers Total current distortion less than 3.5% to 4.5% Total voltage distortion less than 5% Power factor adjustable from 0.85 (leading or lagging) to 1.0

© Copyright 2008 ABB Inverter module Converter module Main switch Main contactor LCL-filter module Active Front End Drive, Construction

© Copyright 2008 ABB Product offering Wall-mounted low harmonic drive ACS800-U31 10 – 125 HP Cabinet-built low harmonic drive ACS HP

© Copyright 2008 ABB. All rights reserved /29/2008 Results-Driven Roadshow Cincinnati, 2008

© Copyright 2008 ABB

© Copyright 2008 ABB Pulse Impedance and Imbalance Dependencies 18 Pulse with 12 Pulse Performance ULH Clearly Superior

© Copyright 2008 ABB Remember! An 80% THD nonlinear load which a will result in only 8% TDD if the nonlinear load is 10% and the linear load is 90%. (80%(10%/(10%+90%))=8%) Harmonic Reduction Summary