Building Geometric Understanding Hands-on Exploration in Geometric Measurement Grades 3-5.

Slides:



Advertisements
Similar presentations
Silicon Valley Math Initiative Professional Development Series
Advertisements

Empowering Learners through the Common Core State Standards
December 11, 2013 Algebra and 8 th Grade Kimberly Tarnowieckyi Last time together October 23. Think back over your lessons form October 24 to December.
Developing Number and Operations through Reasoning, Sensemaking and Connections Minnesota Council of Teachers of Mathematics April 27, 2013 Linda Gojak,
Empowering Young Learners through the Standards for Mathematical Practice Juli K. Dixon, Ph.D. University of Central Florida
HOW MIGHT WE SUPPORT TEACHERS AS THEY DEEPEN THEIR OWN UNDERSTANDING AND EXPLORE STUDENT THINKING RELATED TO THE K-6 GEOMETRY PROGRESSION? GINI STIMPSON.
Transforming Teaching & Learning Grades May 22, 2014 Transition To The Common Core.
Volume Group 5 CCLM^2 Spring 2013 Leadership for the Common Core in Mathematics (CCLM^2) Project University of Wisconsin-Milwaukee, 2012–2013 This material.
©2001 CBMS Math Preparation of Teachers Teachers need to study the mathematics of a cluster of grade levels, both to be ready for the various ways in which.
Math /Algebra Talks: Mental Math Strategies
ACOS 2010 Standards of Mathematical Practice
Transforming Geometric Instruction Part 1 Understanding the Instructional Shifts in the Iowa Core Mathematics Standards Grades 6-8.
Elementary Mathematics
USING THE HUNDREDS CHART TO BUILD NUMBER SENSE Presented by Paula Jones.
Wheeler Lower School Mathematics Program Grades 4-5 Goals: 1.For all students to become mathematically proficient 2.To prepare students for success in.
Math in Focus Singapore Math By Marshall Cavendish
Geometry Grades 3-5. Goals:  Build an understanding of the mathematical concepts within Geometry, Measurement, and NBT Domains  Analyze and describe.
Measured Progress ©2011 ASDN Webinar Series Spring 2013 Session Four March 27, 2013 New Alaska State Standards for Math: Connecting Content with Classroom.
Math is Fun: Patterns, Patterns Everywhere Jessica Harris, Cheryl Kilpatrick, Cyril Quatrone Louis E. Dieruff High School Diffy Warm-Up Oil Spills Steps:
© 2013 UNIVERSITY OF PITTSBURGH Selecting and Sequencing Students’ Solution Paths to Maximize Student Learning Supporting Rigorous Mathematics Teaching.
The Importance of Coherent Lessons in Elementary Mathematics Linda Schoenbrodt, MSDE, Elementary Programs Specialist October, 2014.
Common Core State Standards Initiative Mathematics FPS Implementation Wednesday October 10,
Engaging Learners and Realizing the Development of Mathematical Practices ALM Conference July 15, 2015 Trena L. Wilkerson Professor, Mathematics Education.
1 National Council of Supervisors of Mathematics Illustrating the Standards for Mathematical Practice: Getting Started with the Practices Investigations.
Elementary Math: Principals Professional Development Fall 2011.
Module 4 Shift of Application Sunnyside School District.
TIPM3 Second and Third Grade Geometry November 3, 2010.
 BE present - silence your phones and put away your lap top until needed  BE positive and respectful  BE engaged and contribute equally.
Are We Ready to Implement the Common Core Standards in Mathematics ? Katy White based on a presentation by DR. WESLEY BIRD
Math rigor facilitating student understanding through process goals
Sunnyside School District
Sunnyside School District
T1PM3 4 th and 5 th grade Math Institute Focus on Geometry, Measurement and Data & The Eight Mathematical Practice September 27, 2011.
Shift of Application Math Training Sunnyside School District Focus 1 & 2; Mathematical Shifts & Practices; June 2014.
Estimating and Exploring Area Unit of Study 15: Understand Area Global Concept Guide: 1of 3.
Vacaville USD October 30, AGENDA Problem Solving, Patterns, Expressions and Equations Math Practice Standards and High Leverage Instructional Practices.
Class 4: Part 1 Common Core State Standards (CCSS) Class April 4, 2011.
Integrating Common Core State Standards (CCSS) Mathematics and Science.
Sunnyside School District Math Training Module 6 Conceptual Lessons.
Elementary Math: Grade 5 Professional Development Fall 2011.
Beyond Slope and Points David Harris, Escondido USD/K12 Alliance Susan Gomez Zwiep, CSU Long Beach/K12 Alliance CMC Palm Springs Oct, 2013 Lesson Available:
Decimals & Percents More Than Just Procedures Jennifer M North Morris Professional Development Specialist Math Coach.
LEARNING RESEARCH AND DEVELOPMENT CENTER © 2012 UNIVERSITY OF PITTSBURGH Supporting Rigorous Mathematics Teaching and Learning Using Assessing and Advancing.
Effective Practices and Shifts in Teaching and Learning Mathematics Dr. Amy Roth McDuffie Washington State University Tri-Cities.
MATH LEAD PRESENTATION MATH LEAD PRESENTATION PROGRESSING TOWARDS COMMON CORE Ms. Washington Mrs. Butler Ms. Hess.
Vacaville USD September 5, AGENDA Problem Solving and Patterns Math Practice Standards and Effective Questions Word Problems Ratios and Proportions.
SCIENCE COMPANION: AN OVERVIEW OCTOBER 13, 2009 Debbie Leslie, University of Chicago Center for Elementary Mathematics and Science Education (CEMSE)
Getting to Know Webb’s. Webb’s Depth of Knowledge Level One (recall) requires simple recall of such information as fact, definition, term, or simple procedure.
509A UNIT 1-WEEK2 Dr. Hasan Fall Classroom Observation Unit 1 In your small groups, reflect on your observation of the classroom video lesson using.
#1 Make sense of problems and persevere in solving them How would you describe the problem in your own words? How would you describe what you are trying.
First Grade Math – Session 2 Geometry Mrs. Alter PARENT UNIVERSITY.
This module was developed by Margaret Smith and Victoria Bill at the University of Pittsburgh. Video courtesy of Pittsburgh Public Schools and the Institute.
Common Core State Standards “Not Business as Usual”
Principles to Actions Effective Mathematics Teaching Practices The Case of Wobberson Torchon and the Calling Plans 1 Task Algebra I Principles to Actions.
Ant’s Picnic Imagine that you and the other members of your group are a team of picnic basket ants, and you have just reached a picnic basket filled with.
Reason with shapes and their attributes. 2. G. 2
Vacaville USD December 8, 2014
Connecting Two- and Three-Dimensional Figures
Estimating and Exploring Area
Connecting Academics & Parents
THIRD GRADE Session 1 Vacaville USD August 26, 2014.
Core Mathematics Partnership Building Mathematical Knowledge and
What to Look for Mathematics Grade 4
What to Look for Mathematics Grade 5
What to Look for Mathematics Grade 7
What to Look for Mathematics Grade 1
Connecticut Core Standards for Mathematics
ELEM 525.
Ginny Bohme Sam Buhler Linda Mannhardt
Common Core State Standards Standards for Mathematical Practice
Presentation transcript:

Building Geometric Understanding Hands-on Exploration in Geometric Measurement Grades 3-5

WALT: We are learning to: – Understand the concepts of area and volume as they are sequenced in the CCSS for 3-5 th grades and incorporate the Math Practice Standards in our teaching – Describe relationships between perimeter and area – Describe relationships between surface area and volume

Success Criteria: We know we are successful when we can describe how explorations in geometric measurement meet the criteria of the CCSS in both content and practice standards.

Effective Classroom Practices Manipulatives Cooperative groups Goal setting - WALT Effective questioning Student thinking explained Connections to prior knowledge Multiple exposures

CCSS Practice Standards #2 Reason abstractly and quantitatively #3 Construct viable arguments and critique the reasoning of others #4 Model with mathematics #5 Use appropriate tools strategically #6 Attend to precision

CCSS Content Standards Grade 3 – Geometric measurement: Understand concepts of area and relate area to multiplication and to addition – Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures Grade 4 – 4.MD.3 Apply the area and perimeter formulas for rectangles in real world and mathematical problems Grade 5 – Geometric measurement: understand concepts of volume and relate volume to multiplication and addition

Battista Powerful mathematics learning can occur in problem-centered inquiry-based teaching To develop powerful mathematical thinking, instruction must carefully guide and support students’ personal construction of concepts and ways of reasoning while the students intentionally try to make sense of situations. Pay careful attention to classroom talk Battista, M.T. (1999). Fifth graders’ enumeration of cubes in 3D arrays: Conceptual progress in an inquiry- based classroom. Journal for Research in Mathematics Education, 30, In Lessons Learned from Research, NCTM, 2002, pg In Adding It Up, National Research Council, 2001, p

Why Examine Perimeter and Area Relationships? Woodward and Byrd (1983) found that almost two-thirds of 8 th graders studied believed that rectangles with the same perimeter occupy the same area.* This is a 3 rd grade content piece in the new CCSS. *Stone, Michael E. (1994). Teaching relationships between area and perimeter using geometer’s sketchpad. Mathematics Teacher, Nov

Erika was wondering how to arrange 20 pieces of fencing to make a rectangular dog run. Table Task 1: Build a rectangle with 20 toothpicks (fencing pieces) Sketch, label dimensions and find area. Display all rectangles on chart paper. Label which arrangement has the largest area and which has the smallest. Post

Wait a minute… We have the same number of toothpicks for the perimeter but different areas. How can this happen? Discuss with your table group how students in 3 rd – 5 th may respond to the above question.

Area Although students can recall standard formulas for areas and perimeters, other aspects of area measure remain problematic. Rectangular area is treated as simply multiplying length times width; research suggests many elementary students do not see this product as a measurement. A Research Companion to Principles and Standards for School Mathematics. Reston: NCTM, 2003,p.185

Erika has 20 square pieces of sod (grass) for the dog run. Which rectangular arrangement of sod would take the most fencing? The least fencing? Table Task 2: Build a rectangle with 20 tiles Sketch, label and find the perimeter Display all rectangles on chart paper Label which requires the most fencing and which requires the least fencing Post

Wait a minute…. We always have the same number of tiles but the number for our perimeter changes. How can this happen? Discuss with your table group how students in 3rd – 5th may respond to the above question.

From Perimeter to Area to Volume As students progress in their understanding of geometric measurement, underlying concepts build upon one another. Fourth grade focuses on angle measurement but perimeter and area should be reinforced. Fifth grade introduces the measurement of volume.

Why explore understanding of volume? In one study, Lehrer and Schauble found that fifth graders who had a wide range of experience with representations of volume and its measurement typically organized space into three-dimensional arrays.* Three dimensional thinking is vital in the fields of engineering and science Lehrer and Schauble.( 2000). Inventing data structures for representational purposes: Elementary grade students’ classification models. Mathematical Thinking and Learning, 2, pg In Adding It Up, Helping Children Learn Mathematics, National Research Council. Washington, DC: National Academy Press, 2001.

Patrick Thompson, Vanderbilt University Students in a 5 th grade teaching experiment on area and volume alerted us to the distinction between understanding a formula numerically and understanding it quantitatively.

Assessment Item What is the volume of this box? 17 in 2 6 in Thompson, Patrick W. and Saldanha, Luis. Fraction and multiplicative reasoning. In A Research Companion to Principles and Standards for School Mathematics, NCTM, 2003.

Student Interview A Discussion about how to find volume of the figure: Student: “There’s not enough information” Interviewer: “What information do you need?” “I need to know how long the other sides are.” “What would you do if you knew those numbers?” “Multiply them.” “Any idea what you would get when you multiply them?” “No, it would depend on the numbers.” “Does 17 have anything to do with these numbers?” “No, it’s just the area of that face.”

Student Interview B Discussion about how to find volume of the figure: Student: “Somebody’s already done part of it for us.” Interviewer: “What do you mean?” “All we have to do now is multiply 17 and 6.” “Some children think that you have to know the other two dimensions before you can answer this question. Do you need to know them?” “No, not really.” “What would you do if you knew them?” “I’d just multiply them.” “What would you get when you multiplied them?” “17”

Difficult for students: 3D Students have considerable difficulty determining # of cubes in 3-D rectangular buildings Students told to first predict, then check with cubes, then reflect and refine mental models Student Reflection: discrepancies between predicted and actual number of cubes Battista, M.T. (1999). Fifth graders’ enumeration of cubes in 3D arrays: Conceptual progress in an inquiry- based classroom. Journal for Research in Mathematics Education, 30, In Lessons Learned from Research, NCTM, 2002, pg In Adding It Up, National Research Council, 2001, p

How do you find the volume and surface area of a cube? Table Task 3 Build cubes with various side lengths Sketch, label dimensions and find volume Use “Examining Cubes Record Sheet” to gather information

Examining Cubes Look at the Examining Cubes record sheet Look for patterns. What is the relationship between surface area and volume in a cube? How might students be led to discover how to generalize finding Volume, Area of each face and Total Surface Area for a cube with side length n? Discuss with your table group

Kelly wants to wrap 20 golf balls, each in a cube- shaped box, together in one larger box. Which arrangement will use the least wrapping paper? Build a box with 20 cubes Sketch each box, label dimensions, find area of each face and the total surface area Display all boxes on chart paper Label which arrangement has the largest surface area and which has the smallest. Post

Wait a minute… How can the boxes have the same volume of 20 cubes and have different surface areas? Discuss with your table group how students in 5 th grade may respond to the above question.

CCSS Practice Standards Reread these practice standards and answer: How do the exercises and the discussion questions help students experience the richness of these Practice Standards? #2 Reason abstractly and quantitatively #3 Construct viable arguments and critique the reasoning of others #4 Model with mathematics #5 Use appropriate tools strategically #6 Attend to precision

WALT: We are learning to: – Understand the concepts of area and volume as they are sequenced in the CCSS for 3-5 th grades and incorporate the Math Practice Standards in our teaching – Describe relationships between perimeter and area – Describe relationships between surface area and volume

Success Criteria: We know we are successful when we can describe how explorations in geometric measurement meet the criteria of the CCSS in both content and practice standards.