Grey Iron Cylinder Inoculant Float Joe Licavoli Aaron Lueker Dan Seguin Paul Nelson Terri Mullen Andrew Zeagler.

Slides:



Advertisements
Similar presentations
Chapter 2 Introduction to Heat Transfer
Advertisements

ERT 216 HEAT & MASS TRANSFER Sem 2/
Convection.
IE 337: Materials & Manufacturing Processes
ME 3351 Manufacturing Processes Tutorial 2 Eng. Ahmad Aljazea.
Motion of particles trough fluids part 2
CHAPTER 8 Phase Diagrams 8-1.
Chapter 2: Overall Heat Transfer Coefficient
Chapter 2: Steady-State One-Dimensional Heat Conduction
Chapter 23 Gauss’ Law.
Chapter 24 Gauss’s Law.
Jed Goodell Jesse Williams. Introduction Problem How much heat does a particular heat sink dissipate How many fins are needed to dissipate a specific.
Solidification and Grain Size Strengthening
Chapter 9 Solids and Fluids (c).
Engineering H191 - Drafting / CAD The Ohio State University Gateway Engineering Education Coalition Lab 4P. 1Autumn Quarter Transport Phenomena Lab 4.
Chapter 24 Gauss’s Law.
Solutions of the Conduction Equation P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi An Idea Generates More Mathematics….
Chapter 4 Fluid Flow, Heat Transfer, and Mass Transfer:
1 MODELING DT VAPORIZATION AND MELTING IN A DIRECT DRIVE TARGET B. R. Christensen, A. R. Raffray, and M. S. Tillack Mechanical and Aerospace Engineering.
Fluid mechanics 3.1 – key points
CHAPTER 8 APPROXIMATE SOLUTIONS THE INTEGRAL METHOD
Manufacturing Processes
Flow and Thermal Considerations
STEADY HEAT TRANSFER AND THERMAL RESISTANCE NETWORKS
Final Exam Review.
Evaporation Slides prepared by Daene C. McKinney and Venkatesh Merwade
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Lecture 9 Phase Diagrams 8-1.
1 Calorimeter Thermal Analysis with Increased Heat Loads September 28, 2009.
Evaporation What is evaporation? How is evaporation measured? How is evaporation estimated? Reading: Applied Hydrology Sections 3.5 and 3.6 With assistance.
Manufacturing Engineering Technology in SI Units, 6th Edition PART II: Metal Casting Processes and Equipment Presentation slide for courses, classes,
ERT 216 HEAT & MASS TRANSFER Sem 2/
Lesson 13 CONVECTION HEAT TRANSFER Given the formula for heat transfer and the operating conditions of the system, CALCULATE the rate of heat transfer.
One-Dimensional Steady-State Conduction
Silesian University of Technology in Gliwice Inverse approach for identification of the shrinkage gap thermal resistance in continuous casting of metals.
Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN © 2006 Pearson Education, Inc.,
Convection: Internal Flow ( )
Mechanical & Aerospace Engineering West Virginia University 9 – Phase Diagram (2) (Phase Reactions)
Numerical Simulation of Dendritic Solidification
Analogies among Mass, Heat, and Momentum Transfer
Convection in Flat Plate Boundary Layers P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi A Universal Similarity Law ……
INTRODUCTION TO CONVECTION
Friction Losses Flow through Conduits Incompressible Flow.
Basic concepts of heat transfer
External Flow: The Flat Plate in Parallel Flow Chapter 7 Section 7.1 through 7.3.
Chapter Three Sections 3.1 through 3.4
Heat Transfer by Convection
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 6 Introduction to convection.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 7 External flow.
CONVECTION : An Activity at Solid Boundary P M V Subbarao Associate Professor Mechanical Engineering Department IIT Delhi Identify and Compute Gradients.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 8 Internal flow.
CHAPTER 6 Introduction to convection
Thermal Considerations in a Pipe Flow (YAC: 10-1– 10-3; 10-6) Thermal conditions  Laminar or turbulent  Entrance flow and fully developed thermal condition.
Internal Flow: General Considerations. Entrance Conditions Must distinguish between entrance and fully developed regions. Hydrodynamic Effects: Assume.
Chapter 6: Introduction to Convection
ERT 216/4 HEAT & MASS TRANSFER Sem 2/
Design of Port Injection Systems for SI Engines
Chapter 8: Internal Flow
Fourier’s Law and the Heat Equation
DR S. & S. S. GHANDHY GOVERNMENT ENGINEERING COLLEGE , SURAT.
Chapter 3: One-Dimensional Steady-State Conduction
Phase Diagrams 8-1.
Fundamentals of Metal Casting
Extended Surface Heat Transfer
Dimensional Analysis in Mass Transfer
Fundamentals of Convection
Heat Transfer Coefficient
Internal Flow: General Considerations
Basic concepts of heat transfer: Heat Conduction
Heat Transfer Correlations for Internal Flow
Presentation transcript:

Grey Iron Cylinder Inoculant Float Joe Licavoli Aaron Lueker Dan Seguin Paul Nelson Terri Mullen Andrew Zeagler

Process Grey Iron was cast into many different cylindrical molds with varying height; 6,12, and 20in Inoculant was added to the melt to initiate nucleation sites for graphite flakes to form in the solid The uniformity of flakes affects the mechanical properties of the material Type D/E Flakes 20μm Scale Bar Type A/B Flakes 20μm Scale Bar

Initial Defective Iron Sample The hollow area inside of the solidified iron sample is where the Ferro-Silicate inoculant coagulated, leaving it un-reacted with the iron.

Considerations for the Grey Iron Casting Process Solidification - The cylinder may take too long to solidify, giving the inoculant the opportunity to float Flotation - The inoculant may flow almost completely to the surface before reacting with the melt Dissolution - The radius of the inoculant affects its flotation. Since dissolution affects radius, dissolution may, in turn, affect flotation

Our Group’s Problems to solve Grey Iron Cylinder problems SolidificationFlotationDissolution

Solidification Chvorinov’s rule used to determine solidification time. Solidification from top determined using Newton’s Law of cooling. Inconsistencies in calculation with reality. Did not account heat flow from sides through top.

Solidification from Mold Walls Calculate energy conducted away from the metal to the mold during solidification Excess energy had two sources –From the phase transformation –From superheating This energy had to be conducted away from the metal through mold surfaces

Solidification from the Mold Wall Chvorinov’s rule yields the following equation for time through Fourier’s Law of Conduction: Time comes out to be 8.9 minutes

Effect of Pour Temperature Notice: Not very temperature dependent

Solidification from Top Heat dissipated by convection through top of mold Modeled using Newton’s Law of Cooling –Heat flux found, multiplied by solidification time and energy liberated to find depth of solidification as a function of pour temperature

Inconsistencies The calculated solidification distance from the top was inconsistent with actual results – ” in reality Rough estimate from casting –Did not account for heat flow from sides through top –Limited models for heat transfer coefficient in calculating heat flux

Magmasoft Simulations Modeled solidification to understand where inoculants would have the most time to float Limitations of the universities version of Magmasoft did not allow for the modeling of the Iron containing inoculant particles Knowing the temperature and geometries of the un-solidified sections as time passes could allow for a more accurate calculation of final inoculant distribution

Cooling Rate Control of Flake Spacing Flake spacing is controlled by cooling rate Since the cylinder has a constant cooling rate, there is uniform flake spacing throughout the cylinder This would be a good medium to attempt an experiment to determine the relationship of inoculant mixing time vs. flake spacing (i.e. fade)

Predicted Porosity The simulated regions of porosity without taking into account flotation of Ferro- Silicate Indicates that any other regions of high porosity are completely due to inoculant concentrations

Simulated Inoculant Mixing

Flotation The inoculant is mixed in with the liquid grey iron as it is poured into the transfer crucible From here it is poured into the desired mold As the mold solidifies, the particles of inoculant begin to float because they are less dense than the grey iron

Flotation cont’d. The following calculations were used from example 3.3 (Gaskell) Terminal Velocity- Also the critical radius for flotation can be found by

Flotation cont’d. With this data we can also find the Reynolds number which will show whether the flow is laminar or turbulent The Reynolds number will be less than 0.1, exhibiting laminar flow. (This confirms that our equation for terminal velocity is valid)

Flotation cont. Figure F.1 In this figure the critical particle radius is found as the length of the cylinder is increased

Flotation Results Flotation problems -Most of the particles floated to the surface without reacting with the grey iron melt

Dissolution Changes in particle diameter may influence flotation time Dissolution equation derived from analogous heat transfer equations in Gaskell

Dissolution cont’d. Equations derived from Gaskell lead to solution for mass transfer coefficient h D

Problems with Result Calculations do not agree with experiment Unavailable ternary phase diagram forced approximation from binary phase diagram Viscosity difference is unknown Particle radius ~tenths of mm ΔR =.2363 mm/s

A More Likely Explanation Interfacial resistance may account for differences Solidification at inoculant surface may serve as a barrier to further atomic diffusion Conclusion: Better numbers and consideration of interfacial resistance could accurately model dissolution.

Conclusions Based on solidification model in conjunction with flotation model, inoculant particles in our particular application would have ample time to float. The flotation of incoculant did in fact lead to the numerous pores located on the surface of the cylinder. Dissolution could be a huge factor in removing inoculant from the molten iron before it floated, but interfacial considerations need to be taken to understand the complete dynamics.

Proposed Solutions and Extensions Adjustment of Inoculant Particle Size/Amount (Size might not be most economically feasible). Adjust Length of Cylinder (might not be possible for an application) Consideration of Nucleation Rates Innoculant Mixing Time Develop model for heat transfer coefficient for such a situation

References Metal Casting Handbook For MY4130 by Karl B. Rundman David R. Gaskell “An Introduction to Transport Phenomena in Materials Engineering” SAH Free Consulting Firm “Bring all your problems to me, I’ll help ya out…. unless yer a union guy” The offices of Lord Chadwick Boyle III & Sir Chester Fairfax.

Questions ?????