Conductors in Electrostatic Equilibrium

Slides:



Advertisements
Similar presentations
Conductors in Electrostatic Equilibrium
Advertisements

Announcements Monday guest lecturer: Dr. Fred Salsbury. Solutions now available online. Will strive to post lecture notes before class. May be different.
Study Guide Chapter 19 Sections 9 & 10
Chapter 22: The Electric Field II: Continuous Charge Distributions
Applications of Gauss’s Law
Lecture 6 Problems.
Continuous Charge Distributions
Copyright © 2009 Pearson Education, Inc. Chapter 21 Electric Charge and Electric Field.
Physics 2102 Lecture 4 Gauss’ Law II Physics 2102 Jonathan Dowling Carl Friedrich Gauss Version: 1/23/07 Flux Capacitor (Operational)
© 2012 Pearson Education, Inc. A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2)
C. less, but not zero. D. zero.
21. Gauss’s Law Electric Field Lines Electric Flux & Field Gauss’s Law
Karl Friedrich Gauss ( ) – German mathematician Ch 24 – Gauss’s Law.
ELECTRICITY & MAGNETISM (Fall 2011) LECTURE # 5 BY MOEEN GHIYAS.
Chapter 24 Gauss’s Law.
Chapter 23 Gauss’ Law.
Chapter 24 Gauss’s Law.
Slide 1 Electric Field Lines 10/29/08. Slide 2Fig 25-21, p.778 Field lines at a conductor.
General Physics 2, Lec 5, By/ T.A. Eleyan 1 Additional Questions (Gauss’s Law)
Norah Ali Al-moneef King Saud university
4. Gauss’s law Units: 4.1 Electric flux Uniform electric field
General Physics 2, Lec 6, By/ T.A. Eleyan
Nadiah Alanazi Gauss’s Law 24.3 Application of Gauss’s Law to Various Charge Distributions.
1 Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 9: 21 Oct Web page:
 Since a cube has 6 identical sides and the point charge is at the center problem1 - Charge in a Cube Q Q=3.76 nC is at the center of a cube. What is.
From Chapter 23 – Coulomb’s Law
Short Version : 21. Gauss’s Law Electric Field Lines Electric field lines = Continuous lines whose tangent is everywhere // E. They begin at +
Gauss’ Law.
a b c Gauss’ Law … made easy To solve the above equation for E, you have to be able to CHOOSE A CLOSED SURFACE such that the integral is TRIVIAL. (1)
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
Chapter 24 Gauss’s Law.
General Physics 2, Lec 5, By/ T.A. Eleyan 1 Additional Questions (Gauss’s Law)
Electric Field Lines - a “map” of the strength of the electric field. The electric field is force per unit charge, so the field lines are sometimes called.
Gauss’s law : introduction
III.A 3, Gauss’ Law.
Fig 24-CO, p.737 Chapter 24: Gauss’s Law قانون جاوس 1- Electric Flux 2- Gauss’s Law 3-Application of Gauss’s law 4- Conductors in Electrostatic Equilibrium.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Electric Charge and Electric Field
Chapter 21 Gauss’s Law. Electric Field Lines Electric field lines (convenient for visualizing electric field patterns) – lines pointing in the direction.
Electricity and Magnetism Review 1: Units 1-6
Electric Flux and Gauss Law
Chapter 24 Gauss’s Law. Let’s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to.
Summer July Lecture 3 Gauss’s Law Chp. 24 Cartoon - Electric field is analogous to gravitational field Opening Demo - Warm-up problem Physlet /webphysics.davidson.edu/physletprob/webphysics.davidson.edu/physletprob.
21. Gauss’s Law Electric Field Lines Electric Flux & Field Gauss’s Law
1 Lecture 3 Gauss’s Law Ch. 23 Physlet ch9_2_gauss/default.html Topics –Electric Flux –Gauss’
Application of Gauss’ Law to calculate Electric field:
ELECTRICITY PHY1013S GAUSS’S LAW Gregor Leigh
Physics 2102 Gauss’ law Physics 2102 Gabriela González Carl Friedrich Gauss
Physics 2113 Lecture: 09 MON 14 SEP
Physics 212 Lecture 4, Slide 1 Physics 212 Lecture 4 Today's Concepts: Conductors + Using Gauss’ Law Applied to Determine E field in cases of high symmetry.
Unit 1 Day 11: Applications of Gauss’s Law Spherical Conducting Shell A Long Uniform Line of Charge An Infinitely Large, Thin Plane of Charge Experimental.
Two charges of 16 pC and -65 pC are inside a cube with sides that are of 0.17 m length. Determine the net electric flux through the surface of the cube.
Fig 24-CO, p.737 Chapter 24: Gauss’s Law قانون جاوس 1- Electric Flux 2- Gauss’s Law 3-Application of Gauss’s law 4- Conductors in Electrostatic Equilibrium.
Chapter 18 Electric Forces and Electric Fields The Origin of Electricity The electrical nature of matter is inherent in atomic structure. coulombs.
Slide 1Fig 24-CO, p.737 Chapter 24: Gauss’s Law. Slide 2 INTRODUCTION: In the preceding chapter we showed how to use Coulomb’s law to calculate the electric.
24.2 Gauss’s Law.
4. Gauss’s law Units: 4.1 Electric flux Uniform electric field
Ch 24 – Gauss’s Law Karl Friedrich Gauss
Gauss’s Law ENROLL NO Basic Concepts Electric Flux
Electric Flux & Gauss Law
4. Gauss’s law Units: 4.1 Electric flux Uniform electric field
Last Lectures This lecture Gauss’s law Using Gauss’s law for:
Chapter 21 Gauss’s Law.
Flux Capacitor (Schematic)
3. A 40.0-cm-diameter loop is rotated in a uniform electric field until the position of maximum electric flux is found. The flux in this position is.
C. less, but not zero. D. zero.
Last Lectures This lecture Gauss’s law Using Gauss’s law for:
problem1 - Charge in a Cube
4. Gauss’s law Units: 4.1 Electric flux Uniform electric field
Norah Ali Al-moneef King Saud university
Presentation transcript:

Conductors in Electrostatic Equilibrium AP Physics C Mrs. Coyle

Gauss’s Law Permittivity of free space: ε0 = 8.8542 x 10-12 C2 / (N m2)

Insulators vs Conductors In an insulator, excess charge is not free to move. In conductors the electrons are free to move.

Electrostatic Equilibrium of Conductors Electrostatic Equilibrium for a conductor – no net motion of charge within a conductor. Most conductors, on their own, are in electrostatic equilibrium. Ex: in a piece of metal sitting by itself, there is no “current.”

Characteristics of Conductors in Equilibrium The E-field is zero at all points inside a conductor (regardless if it is hollow or solid). If an isolated conductor carries excess charge, the excess charge resides on its surface. The E-field just outside a charged conductor is perpendicular to the surface and has magnitude σ/ε0, where σ is the surface charge density at that point. On an irregularly shaped conductors the surface charge density is biggest where the conductor is most sharp.

If the conductor is placed in an electric field at first there is a movement of electrons(current) but eventually the movement stops and their is equilibrium. If the E was not zero inside the conductor the movement would continue and there would not be equilibrium.

Note: Inside the cylinder there are no electric field lines.

Ex 1: Point charge Inside a Spherical Metal Shell A -5.0μC charge is located as shown in Fig a). If the shell is electrically neutral, what are the induced charges on its inner and outer surfaces? Are those charges uniformly distributed? What is the E-field pattern?

Ex 1: Solution Strategy Since the shell is electrically neutral, E=0 inside the shell. Take a Gaussian surface inside the shell. This Gaussian surface must encompass an enclosed charge of zero because E=0 inside the conductor. The point charge is –5μC so since the net charge is zero: –5μC + x =0  x= 5μC . This x is the charge on the inside surface of the shell. Since the shell is neutral the outside surface of the shell must have a charge of –x=-5μC

Ex 1: Solution Strategy cont’d Since the point charge is not in the center of the spherical shell but off-centered, there will be more positive charges closer to the point charge. The charge distribution in the inner wall of the shell will be more dense closer to the point charge. The field lines between the point charge and the shell will be closer together nearest to the point charge. However, in the outer surface of the shell the negative charges will be evenly distributed. This is the case no matter where inside the shell, the point charge is located. The field lines are shown in figure b) E-lines are always perpendicular to the conductor surface.

Week 04, Day 2 Hollow Conductors Charge placed INSIDE induces balancing charge ON INSIDE Class 09 11

Week 04, Day 2 Hollow Conductor A charge placed OUTSIDE induces charge separation ON OUTSIDE surface. Class 09 12

Ex 2: Sphere inside a Spherical Shell A solid insulating sphere of radius a carries a uniformly distributed charge, Q. A conducting shell of inner radius b and outer radius c is concentric and carries a net charge of -2Q. Find the E-field in regions 1-4 using Gauss’s Law. Find the charge distribution on the shell when it is in electrostatic equilibrium.

Example #31 Consider a thin spherical shell of radius 14.0 cm with a total charge of 32.0 μC distributed uniformly on its surface. Find the electric field 10.0 cm and 20.0 cm from the center of the charge distribution.

Ex. #35 A uniformly charged, straight filament 7.00 m in length has a total positive charge of 2.00 μC. An uncharged cardboard cylinder 2.00 cm in length and 10.0 cm in radius surrounds the filament at its center, with the filament as the axis of the cylinder. Using reasonable approximations, find (a) the electric field at the surface of the cylinder and (b) the total electric flux through the cylinder.

Ex. #43 A square plate of copper with 50.0-cm sides has no net charge and is placed in a region of uniform electric field of 80.0 kN/C directed perpendicularly to the plate. Find the charge density of each face of the plate and the total charge on each face.

Ex. #47 A long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire. The wire has a charge per unit length of λ, and the cylinder has a net charge per unit length of 2λ. From this information, use Gauss’s law to find (a) the charge per unit length on the inner and outer surfaces of the cylinder and (b) the electric field outside the cylinder, a distance r from the axis.

Faraday’s Ice Pail Experiment A +charge sphere is brought into a neutral metal ice pail attached to a neutral electroscope.