Prof. David R. Jackson ECE Dept. Spring 2014 Notes 29 ECE 6341 1.

Slides:



Advertisements
Similar presentations
ECE 6341 Spring 2014 Prof. David R. Jackson ECE Dept. Notes 36.
Advertisements

Notes 12 ECE Microwave Engineering Fall Surface Waves Prof. David R. Jackson Dept. of ECE Fall 2011.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1.
Fundamental of Optical Engineering Lecture 4.  Recall for the four Maxwell’s equation:
Applied Electricity and Magnetism
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 22 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 27 ECE
Applied Electricity and Magnetism
Prof. David R. Jackson Dept. of ECE Notes 11 ECE Microwave Engineering Fall 2011 Waveguides Part 8: Dispersion and Wave Velocities 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 30 ECE
Unit 4 Optics: Properties of Light and Reflection
Rectangular Waveguides
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 3 ECE
High Frequency Techniques in Electromagnetics Ayhan Altıntaş Bilkent University, Dept. of Electrical Engineering, Ankara, Turkey
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 25 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 19 ECE 6340 Intermediate EM Waves 1.
Applied Electricity and Magnetism
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 23 ECE 6340 Intermediate EM Waves 1.
CH 32: geometric optics. Reflection: Reflection is the simplest method for changing the direction of light. Reflection – Light incident on a boundary.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 13 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 17 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Notes 19 Waveguiding Structures Waveguiding Structures ECE Spring 2013.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 35 ECE
Fall 2014 Notes 23 ECE 2317 Applied Electricity and Magnetism Prof. David R. Jackson ECE Dept. 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 34 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1.
The Ray Model of Light. Light travels in straight lines: Laser Part 1 – Properties of Light.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 24 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 21 ECE 6340 Intermediate EM Waves 1.
Rectangular Waveguides
Prof. David R. Jackson Dept. of ECE Notes 2 ECE Microwave Engineering Fall 2011 Smith Charts 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 21 ECE
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 32 ECE
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 19 ECE
1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.
Laws of Reflection and Plane Mirror Images
Spring 2015 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 22 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Notes 2 ECE Microwave Engineering Fall 2015 Smith Charts 1.
Prof. David R. Jackson Dept. of ECE Notes 6 ECE Microwave Engineering Fall 2015 Waveguides Part 3: Attenuation 1.
Microwave Engineering
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 24 ECE
Spring 2015 Notes 32 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 15.
Notes 27 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 27.
Applied Electricity and Magnetism
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 17.
Applied Electricity and Magnetism
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 25.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 15.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 42.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 35.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 38.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 30.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 3.
Bessel Function Examples
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 14.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 32.
The Ray Model of Light Light travels in a straight line Recall
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 29.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 11.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 5.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 4.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 13.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 18.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 34.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 13.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 27.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 16.
Presentation transcript:

Prof. David R. Jackson ECE Dept. Spring 2014 Notes 29 ECE

High-Frequency Scattering by Cylinder Assume PEC cylinder 2

Physical Optics Physical Optics Approximation Lit Dark Dark region (not seen by incident plane wave) Normal 3

Physical Optics (cont.) Physical Optics Approximation Lit Dark Lit region: Normal Locally, the reflection acts like plane-wave reflection from a flat surface. 4

Physical Optics Approximation Lit Dark Lit region: Dark region: Physical Optics (cont.) 5

Physical Optics Approximation High-Frequency Scattering by Cylinder (cont.) PEC lit Lit region: 6

or High-Frequency Scattering by Cylinder (cont.) 7

Scattered field: Consider a z -directed line source at the origin: High-Frequency Scattering by Cylinder (cont.) 8

For current at, include phase shift terms Far field: Next, consider the line source to be located at ( x ´, y ´ ): High-Frequency Scattering by Cylinder (cont.) 9 Hence

or Hence, letting or Hence High-Frequency Scattering by Cylinder (cont.) 10

For the integral Hence Integrating, High-Frequency Scattering by Cylinder (cont.) 11 or

For the integral Hence This may be written as where Hence, we can identify High-Frequency Scattering by Cylinder (cont.) Compare with 12

or SPP (No SPP. Assume   2  n ) Find the stationary-phase point (SPP): High-Frequency Scattering by Cylinder (cont.) AB 13

(b) since choose We require the restriction that Hence, choose n = -1 : From the previous slide, High-Frequency Scattering by Cylinder (cont.) Also, 14

Geometrical Optics Specular point The specular point of reflection is the point at which the ray reflects off and travels to the observation point. We can show that Observation point Specular point 15

Geometrical Optics (cont.) Specular point Proof 16

Then High-Frequency Scattering by Cylinder (cont.) Note that there is always a stationary-phase point, for all observation angles (except  = 0 ). 17

At SPP: Next, calculate the g function at the stationary-phase point: High-Frequency Scattering by Cylinder (cont.) 18

At SPP: Next, calculate the second derivative of the g function: Note: High-Frequency Scattering by Cylinder (cont.) 19

Hence the integral is Hence High-Frequency Scattering by Cylinder (cont.) 20 Recall:

or High-Frequency Scattering by Cylinder (cont.) 21 Use Then we have

Then or Therefore High-Frequency Scattering by Cylinder (cont.) Recall 22

Then Radiation pattern of cylinder (scattered field) High-Frequency Scattering by Cylinder (cont.) 23

Then High-Frequency Scattering by Cylinder (cont.) 24 In the backscattered direction (  =  ): Echo width (monostatic RCS): Note: E 0 = 1 in our case.

Then High-Frequency Scattering by Cylinder (cont.) 25 Hence (circumference of lit region)