Dalton’s law of Partial Pressure The simple gas laws and idea gas law apply to individual gases as well as to a mixture of nonreactive gases. What is.

Slides:



Advertisements
Similar presentations
Gas Mixtures--Partial Pressure
Advertisements

I.Dalton’s Law A.The total pressure of a mixture of gases equals the sum of the pressures each gas would exert independently 1.P total = P 1 + P 2 + …
Any Gas….. 4 Uniformly fills any container 4 Mixes completely with any other gas 4 Exerts pressure on its surroundings.
GASES! AP Chapter 10. Characteristics of Gases Substances that are gases at room temperature tend to be molecular substances with low molecular masses.
A.P. Chemistry Chapter 5 Gases Part 2. Van der Waal’s Equation: (p ) Due to deviation from ideal behavior, corrections (adjustments) are made.
Kinetic Molecular Theory of Gases
5.7/5.1 Kinetic Molecular Theory of Gases
The Gaseous State 5.1 Gas Pressure and Measurement 5.2 Empirical Gas Laws 5.3 The Ideal Gas Law 5.4 Stoichiometry and Gas Volumes.
The Gaseous State Chapter 12 Dr. Victor Vilchiz.
The Gaseous State Chapter 5.
Chapter 5 Gases John A. Schreifels Chemistry 211.
Ch Gases Properties: Gases are highly compressible and expand to occupy the full volume of their containers. Gases always form homogeneous mixtures.
Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2008, Prentice Hall Chemistry: A Molecular Approach, 1 st Ed. Nivaldo Tro.
Mixtures of Gases Dalton's law of partial pressure states: –the total pressure of a mixture of gases is equal to the sum of the partial pressures of the.
Gases Chapter 12 pp General properties & kinetic theory Gases are made up of particles that have (relatively) large amounts of energy. A gas.
Gas Densities, Partial Pressures, and Kinetic-Molecular Theory Sections
Gases Chapter 10.
GASES Chapter 10. Example: Air 78% nitrogen 21% oxygen Molecules only take up about 0.1% of total volume (the rest is empty space)  extremely low density.
Quinnipiac University
Gases Courtesy of nearingzero.net.
Chapter 5: Gases Renee Y. Becker Valencia Community College CHM
Lecture Notes Alan D. Earhart Southeast Community College Lincoln, NE Chapter 9 Gases: Their Properties and Behavior John E. McMurry Robert C. Fay CHEMISTRY.
Chapter 10; Gases. Elements that exist as gases at 25 0 C and 1 atmosphere.
Chapter 9: Gases: Their Properties and Behavior
Chapter 10 Gases Chemistry, The Central Science, 10th edition
Gases Chang Chapter 5. Chapter 5 Outline Gas Characteristics Pressure The Gas Laws Density and Molar Mass of a Gas Dalton’s Law of Partial Pressure Kinetic.
Prentice Hall © 2003Chapter 10 Chapter 10 Gases CHEMISTRY The Central Science 9th Edition David P. White.
Unit IX: Gases… Part II Chapter 11… think we can cover gases in one day? Obviously not… since this is day 2… but let’s plug away at it!
The Gas State  Gases are everywhere – atmosphere, environmental processes, industrial processes, bodily functions  Gases have unique properties from.
Chapter 09Slide 1 Gases: Their Properties & Behavior 9.
Ch. 10 Gases. Properties Expand to fill their container Highly compressible Molecules are far apart.
Gases and Their Properties Chapter 11. Gases Some common elements and compounds exist in the gaseous state under normal conditions of pressure and temperature.
Chapter 5 – Gases. In Chapter 5 we will explore the relationship between several properties of gases: Pressure: Pascals (Pa) Volume: m 3 or liters Amount:
Christian Madu, Ph.D. Collin College Lecture Presentation Chapter 5-2 Gases.
Ideal Gas Law PV = nRT re-arrange n V = P RT n = molar mass (g/mol) mol gas= mass gas (g) mass of sample V x molar mass = P RT = density mass V density.
Mullis1 Characteristics of Gases ► Vapor = term for gases of substances that are often liquids/solids under ordinary conditions ► Unique gas properties.
Gases Unit 6. Kinetic Molecular Theory  Kinetic energy is the energy an object has due to its motion.  Faster object moves = higher kinetic energy 
1 Chapter 10 Gases Forestville Central School. 2 Properties of Gases Properties of Gases: 1. Gases have an indefinite shape. 2. Gases can expand. 3. Gases.
Chapter 101 Gases. 2 Homework: 10.12, 10.28, 10.42, 10.48, 10.54, 10.66,
Gases All molecules move to some extent. –Vibrational –Rotational –Translational *
Gases: Chapter – Characteristics of Gases Physical properties of gases are all similar. Composed mainly of nonmetallic elements with simple formulas.
Quinnipiac University
Kinetic Molecular Theory. Gases are made up of particles that have (relatively) large amounts of energy. No definite shape or volume, takes shape of its.
Gases Judy Hugh. Useful Units to Remember P: Pressure - Atmospheres (atm), torr, mmHg V: Volume - Liters (L) n: Amount of gas - moles (mol) T: Temperature.
The Property of Gases – Kinetic Molecular Theory explains why gases behave as they do
Ch. 12 The Behavior of Gases Ch The Properties of Gases Ch Factors Affecting Gas Pressure Ch The Gas Laws Ch Ideal Gases Ch
Prentice Hall © 2003Chapter 10 Chapter 10 Gases CHEMISTRY The Central Science 9th Edition.
Chapter 5 Gases. Reactions Involving Gases in reactions of gases, the amount of a gas is often given as a volume the ideal gas law allows us to convert.
Gas Mixtures--Partial Pressure
Gases Courtesy of nearingzero.net.
Gas Laws.
Example A 1.00-L sample of dry air at 25 ⁰C contains mol N2, mol O2, mol Ar, and mol CO2. Calculate the partial pressure.
Gases Chapter 5.
Chapter 10 Gases: Their Properties and Behavior
Quinnipiac University
Quinnipiac University
Quinnipiac University
Quinnipiac University
Kinetic Molecular Theory
Quinnipiac University
Quinnipiac University
Gas Mixtures--Partial Pressure
Quinnipiac University
Lecture Presentation Chapter 10 Gases.
Chapter 5 Gases.
Quinnipiac University
Quinnipiac University
Quinnipiac University
Chapter 5 Gases.
Presentation transcript:

Dalton’s law of Partial Pressure The simple gas laws and idea gas law apply to individual gases as well as to a mixture of nonreactive gases. What is responsible for the pressure in a gas mixture? Since the pressure of pure gas at constant V and T is proportional to its amount (P=nRT/V), the pressure contribute from each individual gas in a mixture is also its amount in the mixture. In other words, the total pressure exerted by a mixture of gases in a container at constant V and T is equal to the sum of the partial pressure of each individual gas in the container, a statement known as Dalton’s law of partial pressure P tot = P A + P B + P C ….at constant V and T Where P A, P B, P C …. refer to the pressure each individual gas would have if it were alone.

Dalton’s law of partial pressures The pressure exerted by a particular gas in a mixture, P A, P B, P C is called partial pressure and refer to the pressure each individual gas would exert if it were alone in the container. That is, Here V = V A =V B = V tot The Concentration of any individual component in a gas mixture is usually expressed as mole fraction (X). The mole fraction of a component in a mixture is the fraction of moles of that component in the total moles of gas mixture.

Which can be rearrange to solve P A, the partial pressure of component A: P A = X A ·P tot

At constant P and T, where P = P A =P B = P C = P tot, the volume of each gas would individually occupy at a pressure equal to P tot is V A = n A RT/P tot ; V B =n B RT/P tot … and so on.

E.g. A 1.00L sample of dry air at 25°C and 786mmHg contains 0.925g of N 2, plus other gases. (a) What is the partial pressure of N 2 in the air sample? (b) What is the mole fraction and mole percent of N 2 in the air? 0.925gN 2 x 1mol N 2 = molN g N 2 P N2 = n N2 RT/V = 0.330molx Latm/(K mol) x 298K 1.00L = atm (=613mmHg) (b) Mole fraction of N 2 = P N2 = 613mmHg = P 786mmHg Air contains 78.0 mole percent of N 2

Collecting a gas over water A gas collected in a pneumatic trough filled with water is said to be collected over water. It is a mixture of gases that contains the desired gases and water vapor. The partial pressure of water vapor in the gas mixture in the collection tube depends only on the temperature. This partial pressure of water vapor is called the vapor pressure. Ptot = Pbar = Pgas + P H2O

E.g. In the following reaction: 2Al(s) + 6HCl(aq)  2AlCl 3 (aq) + 3H 2 (g) If 35.5mL of H 2 (g) is collected over water at 26  C and a barometric pressure of 755mmHg, how many moles of HCl must have been comsumed? (The vapor pressure of water at 26  C is 25.2mmHg) P H 2 = P bar -P H 2 O = mmHg = 729.8mmHg =730mmHg = 730/760 =0.960atm V = 35.5mL = L T = = 299K n (H 2 ) = 0.960atm x L = 1.39 x mol L atm/(mol K) x 299K n(HCl) = 1.39 x mol H 2 x 6mol HCl = 2.78 x mol 3 molH 2

Why do gases behave in the observed fashion? Kinetic-Molecular Theory of Gases: A simple model that attempts to explain the properties of ideal gas. 1 A gas is composed of a very large # of extremely small particles (molecules, or atoms) in constant random, straight-line motion. 2 Molecules of a gas are separated by great distances. The volume of the particles themselves is negligible compared with the total volume of the gas; most of the volume of a gas is empty space. 3 Molecules collide with one another and with the walls of their container. Individual molecules may gain or lose energy as a result of collisions. In a collection of molecules at a constant temperature, however, the total energy remains constant. 4 There are assumed to be no forces between molecules except very briefly during collisions. That is, each molecule acts independently of all the others and is unaffected by their presence, except during collisions

5 The average kinetic energy of the gas particles is proportional to the Kelvin temperature of the sample. The word kinetic describes something in motion. Thus, kinetic energy e k is the energy associated with the motion of an object of mass. From physics e k = 1/2 (mu 2 ) u = speed Accordint to kinetic theory, the pressure of a gas results from bombardment of container walls by molecules. So, the pressure will depend on how often the particles collide to the container wall and how strong the collision force is. Therefore, the pressure of a gas (P) will proportional to the frequency of collision with a surface and to the average force. P  frequency of collision x average force These depend on 1 The amount of translational kinetic energy, e k =1/2mu 2, of the molecules. Translational energy is energy possessed by objects moving through space. The faster the molecules move, the greater their e k and the greater the forces exerted between molecules during collisions.

2 The frequency of molecular collisions- the # of collisions per second. collision frequency  (molecular speed x molecules per unit volume) collision frequency  u x (N/V) 3 When a molecule hits the wall of a vessel, momentum is transferred as the molecule reverses direction. The average force exerted by molecule during a collision depends on its average momentum. The magnitude of this momentum is directly proportional to the mass of a molecule and its velocity. momentum transfer  mass of particle x molecular speed momentum  mu Putting these factors together, then P  frequency of collision x average force P  [u x(N/V)] x mu P  (N/V)mu 2

At any instant, however, not all molecules are moving at the same speed. The pressure depends on the average of all molecules with different speeds, so we must use the average of the squares of their speeds in the expression for pressure. The average of the squares of a group of speeds is called the mean-square speed,. Thus the proportionality expression for pressure becomes  A final factor is that the direction in which every molecule moves has a component in each of the three perpendicular dimensions (x, y and z). The pressure base on motion in just one of these dimensions, leading to a factor of 1/3. Therefore,

Distribution of Molecular Speed According kinetic-molecular theory, the speeds of molecules in a gas vary over a range of values. The British physicist James C. Maxwell showed theoretically- and it has since been demonstrated experimentally-that molecular speeds are distributed as shown: This distribution of speeds depends on the temperature.

Within a given temperature, there is a distribution of speeds. More molecules have the speed u m, the most probable, or modal, speed, than any other single speed. The average speed, ū, is the simple average. The root- mean-square speed, u rms, is the square root of the average of the squares of the speed of all molecules in a sample. It is a type of average molecular speed, equal to the speed of a molecule having the average molecular kinetic energy. Consider 1 mole of an idea gas (n=1). The number of molecules present N = N A. Then

u rms of a gas is directly proportional to the square root of its Kelvin temperature and inversely proportional to the square root of its molar mass. This means that lighter gas molecules have greater speed than heavier ones, but all molecular speeds increase as the temperature rises. E.g. which has the greater root-mean-square speed at 25  C, NH 3 or HCl?

The meaning of temperature then the total kinetic energy of a mole of any gas e k =3/2(RT) Because R, N are constant, above equation simply state that e k =constant xT Kelvin temperature(T) of a gas is directly proportional to the average translational kinetic energy of it molecules. the average kinetic energy of a molecule of any gas What is temperature? What does change in temperature mean? Why does temperature flow from high to low? And why does hot plus cold become warm? From kinetic molecular theory,

What is temperature? Temperature is a number that is related to the average kinetic energy of the molecules of a substance. If temperature is measured in Kelvin degrees, then this number is directly proportional to the average kinetic energy of the molecules. The absolute zero is temperature at which the translational molecular motion should cease. What does change in temperature mean? Change in temperature means changes in the intensity of translational molecular motion. Why does temperature flow from high to low? why does hot plus cold become warm? A gas with higher temperature means greater random motions. When heat flows from one body to another, molecules in the higher temperature give up some of their kinetic energy through collisions with molecules in the lower temperature. The flow of heat continues until the average kinetic translational energy of the molecules become equal, that is the temperature become equalized.

Ideal Geas Law from Kinetic-Molecular Theory One of the most important features of kinetic theory is its explanation of ideal gas law. According to Kinetic-Molecular theory, a gas consists of molecules in constant random motion. PV  Nmu 2 Because the average kinetic energy of mass m and average speed u is 1/2mu 2, PV is proportional to the average kinetic energy of a molecule. Moreover, the average kinetic energy is proportional to the TK. The # of molecules, N, is proportional to the moles of molecules, n, we have PV  nT adding a constant of proportionality, R, PV =nRT

Gas Properties Relating to the Kinetic-Molecular Theory Diffusion is the migration of molecules as a result of random molecular motion. The diffusion of two or more gases results in an intermingling of the molecules and, in a closed container, soon produces a homogeneous mixture. Effusion is the escape of gas molecules from their container through a tiny orifice or pinhole. The rate at which effusion occur is directly proportional to molecular speeds.

Graham’s Law: the rates of effusion of two difference gases are inversely proportional to the square roots of their molar masses. The limitation for Graham’s Law: It can be used to describe effusion only for gases at very low pressure, so that molecules escape through a pinhole individually, not as a jet of gas. Also, the hole has to be tiny so that no collisions occur as molecules pass through. When compared at the same temperature, two different gases have the same value of This means that molecules with a smaller mass (m) have a higher speed. When comparing the effusion of two gases at the same condition

E.g. Calculate the ratio of the effusion rates of molecules of CO 2 and SO 2 from the same container at the same P and T.

Non-ideal (Real) Gases Real gases generally behave ideally only at high temperature and low pressure. A useful measure of how much a gas deviate from idea gas behavior is found in its compressibility factor, PV/nRT. For idea gas PV/nRT = 1. At high pressure, the assumption of ideal gas behavior does not apply to real gas because 1) The volume of a real gas at high pressure is larger than predicted by ideal gas law. 2) at high pressure, the particle are much closer together and the attractive forces between them become important. A number of equations can be used for real gases, and those equations contain terms that must correct for the volume associated with the molecules themselves and for intermolecular forces of attraction. On of these equation is

The Van der Waals Equation V is the volume of n mole of gas. The term n 2 a/V 2 is related to intermolecular forces of attraction. A molecule about to collide with the wall is attract by other molecules, and this reduce its impact with the wall. The value b, called excluded volume per mole, is related to the volume of the gas molecules, and nb is subtracted from the measured volume to represent the free volume within the gas. Both a and b are specific values for particular gases, values that vary with temperature and pressure.

A molecule about to collide with the wall is attracted by other molecules, and this reduces its impact with the wall. Therefore the actual pressure is less than that predicted by the ideal gas law. We can obtain this pressure correction by noting that the total force of attraction on any molecules about to hit the wall is proportional to the concentration of molecules, n/V. The number of the molecules about to hit the wall per unit wall area is also proportional to concentration, n/V, so that the force per unit wall area (pressure) is reduced by a factor proportional to n 2 /V 2. We can write this correction factor as an 2 /V 2. A= proportionality constant. 1) Ideal gas equation corrected for the volume of molecules P = nRT/(V-nb) 2) Then pressure is reduced by intermolecular forces P = n RT - an 2 V- nb V 2

E.g. Use Van de Waal’s equation to calculate the pressure exerted by 1.00 molCl 2 confined to a volume of 2.00 L at 273K. The value of a=6.49L 2 atm/mol 2 and b= L/mol