Assessing the Information Content and Impact of Observations on Ocean Circulation Estimates using 4D-Var Andy Moore Dept. of Ocean Sciences UC Santa Cruz.

Slides:



Advertisements
Similar presentations
Regional and Coastal Circulation Modeling: California Current System Art Miller Scripps Institution of Oceanography ECOFOR Workshop Friday Harbor, WA September.
Advertisements

Variational data assimilation and forecast error statistics
Introduction to Data Assimilation NCEO Data-assimilation training days 5-7 July 2010 Peter Jan van Leeuwen Data Assimilation Research Center (DARC) University.
Introduction to Data Assimilation Peter Jan van Leeuwen IMAU.
1 A Data Assimilation System for Costal Ocean Real-Time Predictions Zhijin Li and Yi Chao Jet Propulsion Laboratory, California Institute of Technology.
Mercator Ocean activity
The Inverse Regional Ocean Modeling System:
Forecasting Forecast Error
Characterization of Forecast Error using Singular Value Decomposition Andy Moore and Kevin Smith University of California Santa Cruz Hernan Arango Rutgers.
Jerome Fiechter, Andy Moore, Gregoire Broquet Ocean Sciences Department University of California, Santa Cruz ROMS Workshop, Sydney, April 2009 Improving.
Art Miller Scripps Institution of Oceanography 2014 ROMS User Workshop Island Hotel Istra Rovinj, Croatia May 27, ROMS User Workshop Island Hotel.
ROMS 4D-Var: Past, Present & Future Andy Moore UC Santa Cruz.
ROMS 4-Deimensional Variational (4D-Var) Data Assimilation Algorithms COAWST Modeling System Training WHOI, Woods Hole, MA August 26, 2014 Hernan G. Arango.
A Simple Approach to Modeling Iron Limitation of Primary Production in the Gulf of Alaska A Simple Approach to Modeling Iron Limitation of Primary Production.
Rutgers Ocean Modeling Group ROMS 4DVar data assimilation Mid-Atlantic Bight and Gulf of Maine John Wilkin with Julia Levin, Javier Zavala-Garay, Hernan.
Building Bluelink David Griffin, Peter Oke, Andreas Schiller et al. March 2007 CSIRO Marine and Atmospheric Research.
Prediction of Ocean Circulation in the Gulf of Mexico and Caribbean Sea An application of the ROMS/TOMS Data Assimilation Models Hernan G. Arango (IMCS,
Jidong Gao and David Stensrud Some OSSEs on Assimilation of Radar Data with a Hybrid 3DVAR/EnKF Method.
Ibrahim Hoteit KAUST, CSIM, May 2010 Should we be using Data Assimilation to Combine Seismic Imaging and Reservoir Modeling? Earth Sciences and Engineering.
Data assimilation schemes in numerical weather forecasting and their link with ensemble forecasting Gérald Desroziers Météo-France, Toulouse, France.
Application of Satellite Data in the Data Assimilation Experiments off Oregon Peng Yu in collaboration with Alexander Kurapov, Gary Egbert, John S. Allen,
ROMS/TOMS Tangent Linear and Adjoint Models Andrew Moore, CU Hernan Arango, Rutgers U Arthur Miller, Bruce Cornuelle, Emanuele Di Lorenzo, Doug Neilson.
1/20 Accelerating minimizations in ensemble variational assimilation G. Desroziers, L. Berre Météo-France/CNRS (CNRM/GAME)
The ROMS TL and ADJ Models: Tools for Generalized Stability Analysis and Data Assimilation Hernan Arango, Rutgers U Emanuele Di Lorenzo, GIT Arthur Miller,
MARCOOS/ESPreSSO ROMS RU Coastal Ocean Modeling and Prediction group John Wilkin, Gordon Zhang, Julia Levin, Naomi Fleming, Javier Zavala-Garay, Hernan.
Advanced data assimilation methods with evolving forecast error covariance Four-dimensional variational analysis (4D-Var) Shu-Chih Yang (with EK)
Coastal Ocean Observation Lab John Wilkin, Hernan Arango, John Evans Naomi Fleming, Gregg Foti, Julia Levin, Javier Zavala-Garay,
An Adjoint Sensitivity Analysis of the Southern California Current Circulation and Ecosystem Andy Moore, Emanuele DiLorenzo, Hernan Arango, Craig Lewis,
Coastal Ocean Observation Lab John Wilkin, Hernan Arango, Julia Levin, Javier Zavala-Garay, Gordon Zhang Regional Ocean.
A Forecasting system for the Southern California Current Emanuele Di Lorenzo Arthur Miller Bruce Cornuelle Scripps Institution of Oceanography, UCSD.
4D Variational Data Assimilation Observation Operators 4D Variational Data Assimilation Observation Operators Hernan G. Arango.
Korea Institute of Atmospheric Prediction Systems (KIAPS) ( 재 ) 한국형수치예보모델개발사업단 Observation impact in East Asia and western North Pacific regions using.
ROMS/TOMS TL and ADJ Models: Tools for Generalized Stability Analysis and Data Assimilation Andrew Moore, CU Hernan Arango, Rutgers U Arthur Miller, Bruce.
The Inverse Regional Ocean Modeling System: Development and Application to Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E., Moore, A., H.
JERICO KICK OFF MEETINGPARIS – Maison de la recherche - 24 & 25 May 2011 WP9: New Methods to Assess the Impact of Coastal Observing Systems Presented by.
Andy Moore, UCSC Hernan Arango, Rutgers Gregoire Broquet, CNRS Chris Edwards & Milena Veneziani, UCSC Brian Powell, U Hawaii Jim Doyle, NRL Monterey Dave.
NOPP Project: Boundary conditions, data assimilation, and predictability in coastal ocean models OSU: R. M. Samelson (lead PI), J. S. Allen, G. D. Egbert,
3D/4D-Var Methods Liang Xu (NRL) JCSDA Summer Colloquium on Satellite DA 1 3D-Var/4D-Var Solution Methods Liang Xu Naval Research Laboratory, Monterey,
Ocean Data Variational Assimilation with OPA: Ongoing developments with OPAVAR and implementation plan for NEMOVAR Sophie RICCI, Anthony Weaver, Nicolas.
Weak and Strong Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and Applications Di Lorenzo, E. Georgia Institute of Technology.
Overview of Rutgers Ocean Modeling Group activities with 4DVar data assimilation in the Mid-Atlantic Bight John Wilkin NOS Silver Spring Feb 28-29, 2012.
In collaboration with: J. S. Allen, G. D. Egbert, R. N. Miller and COAST investigators P. M. Kosro, M. D. Levine, T. Boyd, J. A. Barth, J. Moum, et al.
1 Advantages of data assimilation in coastal ocean circulation models: Oregon perspective Alexander L. Kurapov, J. S. Allen, G. D. Egbert, R. N. Miller.
ROMS 4D-Var: The Complete Story Andy Moore Ocean Sciences Department University of California Santa Cruz & Hernan Arango IMCS, Rutgers University.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
Modeling the biological response to the eddy-resolved circulation in the California Current Arthur J. Miller SIO, La Jolla, CA John R. Moisan NASA.
Data assimilation and forecasting the weather (!) Eugenia Kalnay and many friends University of Maryland.
The OR-WA coastal ocean forecast system Initial hindcast assimilation tests 1 Goals for the COMT project: -DA in presence of the Columbia River -Develop.
ROMS/TOMS European Workshop Alcala de Henares, Spain, November 7, 2006 ROMS Framework and Algorithms Andrew M. Moore UCSC Emanuele Di Lorenzo Georgia Tech.
Weak Constraint 4DVAR in the R egional O cean M odeling S ystem ( ROMS ): Development and application for a baroclinic coastal upwelling system Di Lorenzo,
2005 ROMS/TOMS Workshop Scripps Institution of Oceanography La Jolla, CA, October 25, D Variational Data Assimilation Drivers Hernan G. Arango IMCS,
1 Observation Impact Using a Variational Adjoint System PI: Dr. James Cummings, Code Co-PIs: Dr. Hans.
Predictability of Mesoscale Variability in the East Australian Current given Strong Constraint Data Assimilation John Wilkin Javier Zavala-Garay and Hernan.
Weak and Strong Constraint 4D variational data assimilation: Methods and Applications Di Lorenzo, E. Georgia Institute of Technology Arango, H. Rutgers.
The I nverse R egional O cean M odeling S ystem Development and Application to Variational Data Assimilation of Coastal Mesoscale Eddies. Di Lorenzo, E.
1 A multi-scale three-dimensional variational data assimilation scheme Zhijin Li,, Yi Chao (JPL) James C. McWilliams (UCLA), Kayo Ide (UMD) The 8th International.
Observations and Ocean State Estimation: Impact, Sensitivity and Predictability Andy Moore University of California Santa Cruz Hernan Arango Rutgers University.
Jerome Fiechter Ocean Sciences Department University of California, Santa Cruz ROMS Workshop, Grenoble, 6-8 October 2008 Seasonal and Interannual Ecosystem.
Predictability of Mesoscale Variability in the East Australia Current given Strong Constraint Data Assimilation Hernan G. Arango IMCS, Rutgers John L.
1 Modeling and Forecasting for SCCOOS (Southern California Coastal Ocean Observing System) Yi Chao 1, 2 & Jim McWilliams 2 1 Jet Propulsion Laboratory,
IMCS, Rutgers University University California Santa Cruz
Gleb Panteleev (IARC) Max Yaremchuk, (NRL), Dmitri Nechaev (USM)
Data Assimilation Training
Identifying Loci for Ocean Forecast Model Error from
Art Miller Scripps Institution of Oceanography
Adjoint Sensitivity Analysis of the California Current Circulation and Ecosystem using the Regional Ocean Modeling System (ROMS) Andy Moore, Emanuele.
FSOI adapted for used with 4D-EnVar
Andy Moore1, Hernan Arango2 & Chris Edwards1
LT Ricardo Roman OC3570 March 7, 2006
COAS-CIOSS Coastal Ocean Modeling Activities
Presentation transcript:

Assessing the Information Content and Impact of Observations on Ocean Circulation Estimates using 4D-Var Andy Moore Dept. of Ocean Sciences UC Santa Cruz

Acknowledgements Hernan Arango Chris Edwards Gregoire Broquet Brian Powell Milena Veneziani James Doyle Dave Foley Anthony Weaver Mike Fisher Dan Costa Patrick Robinson Javier Zavala-Garay Office of Naval Research National Science Foundation National Ocean Partnership Program

Outline ROMS 4D-Var Information content of observations Observation impacts Predictability

Data Assimilation b b (t), B b f b (t), B f x b (0), B ROMS Prior Observations + h(t), Q Posterior Circulation 4D-Var (4-dimensional variational method) (Minimum variance estimate)

ROMS 4D-Var Incremental (linearize about a prior) (Courtier et al, 1994) Primal & dual formulations (Courtier 1997) Primal – Incremental 4-Var (I4D-Var) Dual – PSAS (4D-PSAS) & indirect representer (R4D-Var) (Da Silva et al, 1995; Egbert et al, 1994) Strong and weak (dual only) constraint Preconditioned, Lanczos formulation of conjugate gradient (Lorenc, 2003; Tshimanga et al, 2008; Fisher, 1997) Diffusion operator model for prior covariances (Derber & Bouttier, 1999; Weaver & Courtier, 2001) Multivariate balance for prior covariance (Weaver et al, 2005) Adjoint of dual 4D-Var (obs impact, obs sensitivity, OSEs) (Langland and Baker, 2004; Gelaro et al, 2007) Physical and ecosystem components Parallel (MPI) (Moore et al, 2011a)

ROMS 4D-Var Incremental (linearize about a prior) (Courtier et al, 1994) Primal & dual formulations (Courtier 1997) Primal – Incremental 4-Var (I4D-Var) Dual – PSAS (4D-PSAS) & indirect representer (R4D-Var) (Da Silva et al, 1995; Egbert et al, 1994) Strong and weak (dual only) constraint Preconditioned, Lanczos formulation of conjugate gradient (Lorenc, 2003; Tshimanga et al, 2008; Fisher, 1997) Diffusion operator model for prior covariances (Derber & Bouttier, 1999; Weaver & Courtier, 2001) Multivariate balance for prior covariance (Weaver et al, 2005) Adjoint of dual 4D-Var (obs impact, obs sensitivity, OSEs) (Langland and Baker, 2004; Gelaro et al, 2007) Physical and ecosystem components Parallel (MPI) (Moore et al, 2011a)

Lanczos Factorization Cornelius Lanczos ( ) A is the Hessian or stabilized representer matrix. m is the number of inner-loops

The California Current Mesoscale eddies

Conclusions Much of the current observational data is redundant (>90%). In situ observations represent ~10% of total obs, but often exert considerable impact on the coastal circulation. Satellite obs exert the largest control on predictability of coastal circulation. Information content: Observation impact: Observation sensitivity & predictability:

ROMS: California Current System (CCS) 3km, 10 km, 30km, 30 or 42 levels Veneziani et al (2009) Broquet et al (2009ab, 2011) COAMPS forcing ECCO open boundary conditions f b (t), B f b b (t), B b x b (0), B Previous assimilation cycle 4D-Var applied sequentially every 7 days: Jul 2002-Dec 2004.

Observations (y) CalCOFI & GLOBEC SST & SSH ARGO TOPP Elephant Seals (APB) Ingleby and Huddleston (2007) Data from Dan Costa EN3

Observations (y) CalCOFI & GLOBEC SST & SSH ARGO Ingleby and Huddleston (2007) Data from Dan Costa ~90% ~10% TOPP Elephant Seals (APB) EN3

Observations 4D-Var Analysis Posterior Observations 4D-Var Analysis Posterior Observations 4D-Var Analysis Posterior prior Sequential 4D-Var ( ) 7 days Forecast

Maximum Likelihood Estimate Circulation estimate from 4D-Var: Posterior Prior Gain Obs operator Prior Cov Obs Cov TLM at obs points Prior hypotheses

Information Content of Obs Degrees of freedom of obs (dof): 30km Only ~10% of obs contain independent info At 10km resolution, dof~1-2% of N obs Tr{KG}/N obs vs assimilation cycle (courtesy of Lanczos vectors) Cardinali et al, 2004; Desroziers et al., 2009 Bennett & McIntosh, 1982 upper & lower bounds (Moore et al, 2011b)

Observation Impacts KTKT 7day average transport Transport increment = (Posterior-Prior) 10km ROMS (Langland & Baker, 2004; Gelaro et al., 2007)

Prior alongshore transport (CC+CUC+CJ) Prior cross-shore transport Poleward Equatorward Offshore Onshore

Poleward Equatorward Offshore Onshore Analysis Cycle – Transport Increments Alongshore transport Cross-shore transport Tangent Linear Assumption Holds!

Analysis Cycle – Observation Impacts Poleward Equatorward Offshore Onshore Alongshore transport Cross-shore transport 10km ROMS rms (Moore et al, 2011c)

Sv (10 -5 ) Alongshore Transport Impacts IGW CTW (G) Adjoint CTW (G T ) CTW (G) Adjoint CTW (G T ) SSH SST Gyre Circulation

Alongshore Transport Impacts Argo Salinity CTD Salinity Sv (10 -3 ) Sv

time t0t0 t Predictability t 0 +7 Predictability due to assimilating observations during [t 0,t 0 +7]: 4D-Var 14 day forecast ensemble 7 day forecast ensemble Obs Sensitivity using (4D-Var) T

Example: 37N Transport Predictability implies 4D-Var increases predictability 30km ROMS (Moore et al, 2011d)

Conclusions Much of the current observational data is redundant (>90%). Caveat: Dependent on prior hypotheses. In situ observations represent ~10% of total obs, but often exert considerable impact on the coastal circulation (transport). Caveat: Dependent on prior hypotheses. Recommendation: Decimate satellite data. Satellite obs exert the largest control on predictability coastal circulation (transport). Caveat: Dependent on prior hypotheses.