Fluid Mechanics Density is mass per unit of volume. ρ = m / V ρ = density m = mass (kg) V = volume (m 3 ) Things with low densities float in things with.

Slides:



Advertisements
Similar presentations
Chapter 12 Forces & Fluids.
Advertisements

Thursday, June 28, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #17 Thursday, June 28, 2007 Dr. Jaehoon Yu Variation.
Fluids Mechanics Carlos Silva December 2 nd 2009.
Fluid Dynamics AP Physics B.
Chapter 14: Fluid mechanics
Sect. 10-8: Fluids in Motion (Hydrodynamics)
Fluids - Statics Level 1 Physics. Essential Questions and Objectives Essential Questions What are the physical properties of fluid states of matter? What.
AP Physics B Fluid Dynamics.
Lecture 8b – States of Matter Fluid Copyright © 2009 Pearson Education, Inc.
Chapter 13 Fluids Chapter opener. Underwater divers and sea creatures experience a buoyant force (FB) that closely balances their weight mg. The buoyant.
Unit 3 - FLUID MECHANICS.
Fluid Mechanics Chapter 10.
Fluids Fluids flow – conform to shape of container –liquids OR gas.
Fluid Mechanics Ellen Akers. Fluids A fluid is a substance that has the ability to flow and change its shape. Gases and liquids are both fluids. Liquids.
Terms Density Specific Gravity Pressure Gauge Pressure
Fluid Dynamics. Floating An object floats on a fluid if its density is less than that of the fluid When floating F B = F W ρ f V disp g = ρ o V o g ρ.
Chapter 9 Fluid Mechanics.
Chapter 10 Fluids.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
List and describe the four states of matter.
Advanced Physics Chapter 10 Fluids. Chapter 10 Fluids 10.1 Phases of Matter 10.2 Density and Specific Gravity 10.3 Pressure in Fluids 10.4 Atmospheric.
Fluids A fluid is anything that flows (liquid or a gas)
Units of Chapter 14 Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle Measurement.
Hydrostatics: Fluids at Rest. applying Newtonian principles to fluids hydrostatics—the study of stationary fluids in which all forces are in equilibrium.
Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas Physics Chapter 13.
Fluid Studies. What is a fluid? 4 An ideal fluid doesn’t compress, like most common liquids. 4 Gas has fluid-like properties, but is compressible unless.
Warm-up Pick up the free response at the door and begin working on it.
Fluids AP Physics Chapter 10.
1 Outline Review Pressure and Density. Begin Buoyant Forces. Continuity Equation. Bernoulli’s Principle. CAPA and Examples.
Fluids Archimedes’ Principle Pascal’s Law Bernoulli’s Principle
Chapter 10 Fluids. Units of Chapter 10 Phases of Matter Density Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle Measurement.
Warm-up For light of a given frequency, ice has an index of refraction of 1.31 and water has an index of refraction of Find the critical angle θ.
Chapter 10 Fluids Phases Solid Solid Liquid Liquid Gas Gas Fluids Fluids Plasma Plasma Densit Density.
Fluid Mechanics - Hydrostatics AP Physics 2. States of Matter Before we begin to understand the nature of a Fluid we must understand the nature of all.
Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of “LAWS” that fluids obey Need some definitions.
Fluids.
Chapter 9 Fluid Mechanics. Chapter Objectives Define fluid Density Buoyant force Buoyantly of floating objects Pressure Pascal's principle Pressure and.
1 SAL ENGG COLLGE ANDTECHNOLOGY AHMEDABAD Fluid Dynamics BY
Solids and Fluids Chapter 9. Phases of Matter  Solid – definite shape and volume  Liquid – definite volume but assumes the shape of its container 
Chapter 15 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas –
1 Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas.
Chapter 9 Fluid Mechanics. Fluids “A nonsolid state of matter in which the atoms or molecules are free to move past each other, as in a gas or liquid.”
Fluids Honors Physics. Liquids In a liquid, molecules flow freely from position to position by sliding over each other Have definite volume Do not have.
Introduction To Fluids. Density  = m/V  = m/V   : density (kg/m 3 )  m: mass (kg)  V: volume (m 3 )
Wednesday, Nov. 24, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Quiz Workout 2.Buoyant Force and Archimedes’ Principle 3.Flow Rate and Continuity Equation.
Wednesday, Nov. 19, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer 1.Fluid.
Monday, Apr. 19, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #21 Monday, Apr. 19, 2004 Dr. Jaehoon Yu Buoyant Force.
Chapter 14 Fluids.
Advanced Physics Chapter 10 Fluids.
AP Physics 2 UNIT 1 – FLUID MECHANICS. Fluid Mechanics - Hydrostatics.
Sect. 14.6: Bernoulli’s Equation. Bernoulli’s Principle (qualitative): “Where the fluid velocity is high, the pressure is low, and where the velocity.
FLUIDS A fluid is any substance that flows and conforms to the boundaries of its container. A fluid could be a gas or a liquid. An ideal fluid is assumed.
Wednesday, Apr. 14, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #20 Wednesday, Apr. 14, 2004 Dr. Jaehoon Yu Variation.
Fluids A fluid is anything that flows (liquid or a gas)
Monday April 26, PHYS , Spring 2004 Dr. Andrew Brandt PHYS 1443 – Section 501 Lecture #24 Monday, April 26, 2004 Dr. Andrew Brandt 1.Fluid.
Fluids. Units of Chapter 10 Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle.
Fluid Mechanics - Hydrostatics AP Physics B. States of Matter Before we begin to understand the nature of a Fluid we must understand the nature of all.
Introduction To Fluids. Density ρ = m/V ρ = m/V  ρ: density (kg/m 3 )  m: mass (kg)  V: volume (m 3 )
Fluid Mechanics Chapter 8. Fluids Ability to flow Ability to change shape Both liquids and gases Only liquids have definite volume.
Chapter 14 Fluid Mechanics. States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas – unconfined.
Pressure Force per unit area Units: Pa (N/m 2 ), lb/in 2, atm, torr, mmHg P = pressure, N (psi) F=force, N (lb) A= area, m 2 (in 2 )
Physics Chapter 9: Fluid Mechanics. Fluids  Fluids  Definition - Materials that Flow  Liquids  Definite Volume  Non-Compressible  Gasses  No Definite.
Chapter 12: Forces and Fluids
Fluid Dynamics Grow More Faculty of Engineering , Himatnagar
Chapter 11 Fluids.
PHYS 1443 – Section 003 Lecture #21
When you catch a deep-sea fish, why does its eyes pop-out?
Physics 21.
Bernoulli’s Principle
Presentation transcript:

Fluid Mechanics Density is mass per unit of volume. ρ = m / V ρ = density m = mass (kg) V = volume (m 3 ) Things with low densities float in things with higher densities. Specific gravity = the ratio of a substance’s density to the density of water A fluid is a substance that has the ability to flow, and therefore, does not maintain a specific shape. It can either be a liquid or a gas. A valuable measurement of a fluid is its density (water) 1.34

Pressure is force per unit of area. P = F / A P = pressure (Pascal) F = force (N) A = surface area (m 2 ) Fluids exert pressure on their surroundings. Which book exerts more pressure on the table? Why can she lay on a bed of nails and be struck with a sledgehammer without getting hurt?

Fluids exert pressure in all directions. Forces acting in all directions on the cube are equal (assuming cube is very small) Fluids exert forces that are perpendicular to the solid surfaces they are in contact with. If they are at rest, they do NOT exert forces parallel to the solid surface. The Forces Exerted by Fluids

Pressure varies with depth. As you go deeper, the amount of water above you increases exerting more force on you because of gravity. P = F / A F (cube of water) = mg m = ρV = ρAh F = ρAhg P = ρAhg / A P = ρgh P = pressure (Pa) ρ = density (kg/m 3 ) g = gravitational acceleration (m/s 2 ) h = distance from surface (m) Furthermore, ∆P = ρg∆h

Assuming that the difference between the surface of the water in the tank and the household faucet is 30 m, calculate the difference in water pressure between the surface and the faucet.

A manometer is used to measure pressure. A fluid is pushed on by two pressures – the atmospheric pressure from the outside (P 0 ) and the pressure being measured (P). The fluid adjusts itself to an equilibrium point based on the pressure difference which produces a height difference (Δh). ∆P = ρg∆h P - P 0 = ρg∆h The term ρg∆h is known as the gauge pressure. It is the difference between the atmospheric pressure and the pressure being measured (or the pressure relative to the atmospheric pressure) Units for P  Pa (N/m 2 ), mm Hg (torr), atm

Intravenous infusions are often made under gravity. Assuming the fluid has a density of 1.00 g/cm 3, at what height should the bottle be placed so that the liquid pressure is 55 mm-Hg? If the blood pressure is 18 mm-Hg above atmospheric pressure, how high should the bottle be placed so that the fluid just barely enters the vein?

Pascal’s Principle P in = P out F in / A in = F out / A out F out / F in = A out / A in (mechanical advantage) If an external pressure is applied to a confined fluid, that extra pressure is transmitted throughout the fluid

Archimedes’ Principle Why do people rehabilitate injuries by training in a pool? There is less stress on their joints. Why? Buoyant Force – an upward force exerted by a liquid on an object submerged in the liquid Picture shows an object submerged in a fluid. The buoyant force is the net force in the vertical direction (we know F 2 is greater than F 1 because of the greater fluid pressure) F b = F 2 – F 1 Since P = F / A = P 2 A 2 – P 1 A 1 = A(P 2 – P 1 )

Since P = ρgh F b = A(ρ F gh 2 – ρ F gh 1 ) = ρ F gA (h 2 – h 1 ) = ρ F gA∆h = ρ F gV Since ρ F = m F / V F b = m F g F b = buoyant force (N) m F = mass of fluid displaced (kg) g = gravitational acceleration (m/s 2 ) Archimedes’ Principle – The buoyant force on an object immersed in a fluid is equal to the weight of the fluid displaced by that object.

An object’s apparent weight is the weight that object experiences when submerged in a liquid W ´ = W – F b W ´ = apparent weight W = actual weight F b = buoyant force There is a buoyant force of: F b = W – W ’ 14.7(9.8)-13.4(9.8) = 12.7 N (equal to the weight of the liquid displaced)

If this 1200-kg log was fully submerged, the water it would displace would have a greater mass than the log itself (2000 kg) It rises until the fluid it displaces matches the weight of the log.

A scuba diver and her gear displace a volume of 65.0 L and have a total mass of 68.0 kg. (a)What is the buoyant force on the diver in water? (b)Will the diver sink or float? (c)What is her apparent weight?

Fluids in Motion If fluid flow (gas or liquid) is smooth as in figure (a), it is called streamline or laminar flow. In this flow, each particle follows a smooth path or streamline, not crossing paths with other particles. Turbulent flow exists with the development of eddies, which are whirlpool-like circles along the path of the streamlines. In this flow, particles cross paths and lose a great deal of energy.

To express the rate of laminar flow, the mass flow rate is useful: m / ∆t m = mass (kg) ∆t = time interval (s) Fluids typically flow through pipes which have varying diameters. When the diameter changes, the flow changes. Since ρ = m / V m / ∆t = ρV / ∆t Since V = AΔl m / ∆t = ρAΔl/ ∆t m / ∆t = ρAv (v = fluid velocity)

In a pipe, flow rate is constant, so ρA 1 v 1 = ρA 2 v 2 Since ρ is constant, A 1 v 1 = A 2 v 2 (Continuity Equation)

What area must a heating duct have if air moving 3.0 m/s along it can replenish the air every 15 minutes in a room of volume 300 m 3 ? Assume the air’s density remains constant.

Bernoulli’s Principle Ever wondered… Why a curve ball curves? Why a sailboat can move against the wind? Why an airplane wing has lift? Bernoulli’s Principle – Where the velocity of the fluid is high, the pressure is low and where the velocity is low, the pressure is high Why is that the case?

Consider the amount of work necessary to move blue-colored fluid from position in (a) to position in (b) At point 1(left end), work is done on blue fluid to move it: W 1 = F 1 Δl 1 = P 1 A 1 Δl 1 At point 2 (right end), negative work is done by white fluid against motion of blue fluid: W 2 = -P 2 A 2 Δl 2 Also, negative work is done to lift the fluid against gravity. W 3 = -mg(y 2 - y 1 ) Net work = W 1 + W 2 + W 3

= P 1 A 1 Δl 1 - P 2 A 2 Δl 2 - mgy 2 + mgy 1 Since W = ∆KE ½m 2 v 2 2 – ½m 1 v 1 2 = P 1 A 1 Δl 1 - P 2 A 2 Δl 2 – m 2 gy 2 + m 1 gy 1 Since m = ρV = ρAΔl ½ρA 2 Δl 2 v 2 2 – ½ρA 1 Δl 1 v 1 2 = P 1 A 1 Δl 1 - P 2 A 2 Δl 2 – ρA 2 Δl 2 gy 2 + ρA 1 Δl 1 gy 1 Since A 1 Δl 1 = A 2 Δl 2 ½ρv 2 2 – ½ρv 1 2 = P 1 - P 2 - ρgy 2 + ρgy 1 P 1 + ½ρv ρgy 1 = P 2 + ½ρv ρgy 2

P + ½ρv 2 + ρgy = constant P = Pressure (Pa) ρ = density (kg/m 3 ) v = fluid velocity (m/s) g = gravitational acceleration (m/s 2 ) y = vertical height above reference point (m)

Water circulates throughout a house in a hot-water heating system. If the water is pumped at a speed of 0.50 m/s through a 4.0-cm diameter pipe in the basement under a pressure of 3.0 atm, what will be the flow speed and pressure in a 2.6-cm diameter pipe on the 2 nd floor 5.0 m above?

Returning to the original questions… When pitch is thrown with a spin on it, spin on side A slows down air molecules causing higher pressure. Spin on side B speeds up air molecules causing lower pressure. Net force in left direction

When air moves over the top of the wing, the streamlines get forced together causing them to speed up (Av = Av). The streamlines underneath are moving slower. Slower molecules underneath have higher pressure than molecules above wing causing net for up.

When sails are set at angle, the wind hits the front of the sail lowering the pressure, and still air behind the sail has higher pressure. Net force pushes sail to left. Water pushes against keel to the right giving a net force into the wind.

P 1 + ½ρv ρgy 1 = P 2 + ½ρv ρgy 2 What is the speed at which the water leaves the spigot? Assumptions the size of the spigot is small compared to the diameter of the jar, so v 2 will be insignificant compared to v 1 P 1 = P 2 because both are open to atmosphere