EuroPlanet, Sept. 22, 2006Stas Barabash, Page 1 ENA diagnostics of the solar wind interaction with planetary bodies Stas Barabash Swedish Institute of.

Slides:



Advertisements
Similar presentations
A. Milillo, S. Orsini and A. Mura (INAF/Institute of Space Astrophysics and Planetology) And the SERENA Team.
Advertisements

Plasma-induced Sputtering & Heating of Titan’s Atmosphere R. E. Johnson & O.J. Tucker Goal Understand role of the plasma in the evolution of Titan’s atmosphere.
Max-Planck-Gesellschaft Max-Planck-Institut für Aeronomie J. Woch, S3 Seminar, MPAE, May 26, 2004 Energetic Neutral Atom - ENA - Imaging Application to.
Solar System Physics and Space Technology Program at IRF-Kiruna Prof. Stas Barabash Swedish Institute of Space Physics, Kiruna.
First composition measurements of energetic neutral atoms A. T. Y. Lui et al., GRL, Vol 23, pages: , 1996.
1 FIREBIRD Science Overview Marcello Ruffolo Nathan Hyatt Jordan Maxwell 2 August 2013FIREBIRD Science.
PRECIPITATION OF HIGH-ENERGY PROTONS AND HYDROGEN ATOMS INTO THE UPPER ATMOSPHERES OF MARS AND VENUS Valery I. Shematovich Institute of Astronomy, Russian.
Non-magnetic Planets Yingjuan Ma, Andrew Nagy, Gabor Toth, Igor Sololov, KC Hansen, Darren DeZeeuw, Dalal Najib, Chuanfei Dong, Steve Bougher SWMF User.
Ion Equatorial Distributions from Energetic Neutral Atom Images Obtained From IMAGE during Geomagnetic Storms Zhang, X. X., J. D. Perez, M.-C. Fok D. G.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
Space Weather. Coronal loops Intense magnetic field lines trap plasma main_TRACE_loop_arcade_lg.jpg.
Budget and Roles of Heavy Ions in the Solar System M. Yamauchi, I. Sandahl, H. Nilsson, R. Lundin, and L. Eliasson Swedish Institute of Space Physics (IRF)
Modeling Generation and Nonlinear Evolution of Plasma Turbulence for Radiation Belt Remediation Center for Space Science & Engineering Research Virginia.
Solar wind interaction with the comet Halley and Venus
The Interaction of the Solar Wind with Mars D.A. Brain Fall AGU December 8, 2005 UC Berkeley Space Sciences Lab.
Reinisch_ Solar Terrestrial Relations (Cravens, Physics of Solar Systems Plasmas, Cambridge U.P.) Lecture 1- Space Environment –Matter in.
Lecture 3 Introduction to Magnetic Storms. An isolated substorm is caused by a brief (30-60 min) pulse of southward IMF. Magnetospheric storms are large,
Solar system science using X-Rays Magnetosheath dynamics Shock – shock interactions Auroral X-ray emissions Solar X-rays Comets Other planets Not discussed.
Charge-Exchange Mechanism of X-ray Emission V. Kharchenko ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge 1. Introduction - interaction between.
Magnetospheric Morphology Prepared by Prajwal Kulkarni and Naoshin Haque Stanford University, Stanford, CA IHY Workshop on Advancing VLF through the Global.
Mercury’s Atmosphere: A Surface-bound Exosphere Virginia Pasek PTYS 395.
November 2006 MERCURY OBSERVATIONS - JUNE 2006 DATA REVIEW MEETING Review of Physical Processes and Modeling Approaches "A summary of uncertain/debated.
SWCX and the production of X-rays SWCX produces X-rays when heavy ions in the solar wind interact with neutrals in the Earth’s exosphere, cometary nebulae,
Hermean sputtering: SERENA/ELENA Simulated observation.
International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments"
How do gravity waves determine the global distributions of winds, temperature, density and turbulence within a planetary atmosphere? What is the fundamental.
Tuija I. Pulkkinen Finnish Meteorological Institute Helsinki, Finland
Spacecraft Instruments. ► Spacecraft instrument selection begins with the mission description and the selected primary and secondary mission objectives.
A. Milillo, and the GENIE Team. Golden Age of of Solar System Exploration Ganymede’s and Europa’s Neutral Imaging Experiment (GENIE) GENIE is a high-angular-resolution.
Computer Simulations in Solar System Physics Mats Holmström Swedish Institute of Space Physics (IRF) Forskarskolan i rymdteknik Göteborg 12 September 2005.
The EUV impact on ionosphere: J.-E. Wahlund and M. Yamauchi Swedish Institute of Space Physics (IRF) ON3 Response of atmospheres and magnetospheres of.
1 Origin of Ion Cyclotron Waves in the Polar Cusp: Insights from Comparative Planetology Discovery by OGO-5 Ion cyclotron waves in other planetary magnetospheres.
1 Proximal +/- 1 hr Priorities June 5, 2014 RPWS Team Science Priorities (+/- 1 hr) W. Kurth and D. A. Gurnett For the RPWS Team Cassini PSG Telecon 5.
14 May JIM M. RAINES University of Michigan DANIEL J. GERSHMAN, THOMAS H. ZURBUCHEN, JAMES A. SLAVIN, HAJE KORTH, and BRIAN J. ANDERSON Magnetospheric.
The PLANETOCOSMICS Geant4 application L. Desorgher Physikalisches Institut, University of Bern.
9 May MESSENGER First Flyby Magnetospheric Results J. A. Slavin and the MESSENGER Team BepiColombo SERENA Team Meeting Santa Fe, New Mexico 11 May.
The Sun.
JAXA’s Exploration of the Solar System Beyond the Moon and Mars.
PAPER I. ENA DATA ANALYSIS RESULTS. The Imager for Magnetopause-to- Aurora Global Exploration (IMAGE) missionis the first NASA Mid-size Explorer (MIDEX)
Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument Andrew Gerrard, Louis Lanzerotti et al. Center.
X-rays from Mars K. Dennerl, C. Lisse, A. Bhardwaj, V. Burwitz, J. Englhauser, H. Gunell, M. Holstrom, F. Jansen, V. Kharchenko, and P. Rodriguez-Pascual.
Cold plasma: a previously hidden solar system particle population Mats André and Chris Cully Swedish Institute of Space Physics, Uppsala.
Energy conversion at Saturn’s magnetosphere: from dayside reconnection to kronian substorms Dr. Caitríona Jackman Uppsala, May 22 nd 2008.
Universal Processes in Neutral Media Roger Smith Chapman Meeting on Universal Processes Savannah, Georgia November 2008.
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Fall, 2009 Copyright © Magnetosphere: Geomagnetic Activties Nov. 5, 2009.
Need for a mission to understand the Earth- Venus-Mars difference in Nitrogen M. Yamauchi 1, I. Dandouras 2, and NITRO proposal team (1) Swedish Institute.
1 Hybrid Simulations of the Callisto - Magnetosphere Interaction Stas Barabash and Mats Holmström Swedish Institute of Space Physics, Kiruna, Sweden.
1 MAVEN PFP ICDR May 23-25, 2011 Mars Atmosphere and Volatile EvolutioN (MAVEN) Mission Particles and Fields Science Critical Design Review May ,
PARTICLES IN THE MAGNETOSPHERE
Astronomy 1010 Planetary Astronomy Fall_2015 Day-35.
Space Weather in Earth’s magnetosphere MODELS  DATA  TOOLS  SYSTEMS  SERVICES  INNOVATIVE SOLUTIONS Space Weather Researc h Center Masha Kuznetsova.
NASA NAG Structure and Dynamics of the Near Earth Large-Scale Electric Field During Major Geomagnetic Storms P-I John R. Wygant Assoc. Professor.
Solar Wind Induced Escape on Mars and Venus. Mutual Lessons from Different Space Missions E. Dubinin Max-Planck Institute for Solar System Research, Katlenburg-Lindau,
Satellites and interactions
ENA generation mechnism Krimigis et al, 2004 Some Questions about the Interaction between Trapped Particles and Neutrals l What is the source of trapped.
M. Yamauchi 1, H. Lammer 2, J.-E. Wahlund 3 1. Swedish Institute of Space Physics (IRF), Kiruna, Sweden 2. Space Research Institute (IWF), Graz, Austria.
Lunar Surface Atmosphere Spectrometer (LSAS) Objectives: The instrument LSAS is designed to study the composition and structure of the Lunar atmosphere.
ASEN 5335 Aerospace Environments -- Magnetospheres 1 As the magnetized solar wind flows past the Earth, the plasma interacts with Earth’s magnetic field.
Impact of CIRs/CMEs on the ionospheres of Venus and Mars Niklas Edberg IRF Uppsala, Sweden H. Nilsson, Y. Futaana, G. Stenberg, D. Andrews, K. Ågren, S.
ENA generation mechnism Krimigis et al, 2004 Some Questions about the Interaction between Trapped Particles and Neutrals l What is the source of trapped.
Earth’s Magnetosphere Space Weather Training Kennedy Space Center Space Weather Research Center.
Titan and Saturn reports June, TOST agenda.
Adrian Martindale (on behalf of MIXS team) University of Leicester
Energetic Neutral Atom Imaging of
Shyama Narendranath Space Astronomy Group ISRO Satellite Centre
Enceladus Plume Simulations
Exploring the ionosphere of Mars
Mars, Venus, The Moon, and Jovian/Saturnian satellites
Magnetosphere: Structure and Properties
Presentation transcript:

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 1 ENA diagnostics of the solar wind interaction with planetary bodies Stas Barabash Swedish Institute of Space Physics (IRF), Kiruna, Sweden

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 2 Outline ENA introduction Sci. objectives of planetary ENA imaging. What can one achieve by ENA imaging? Global ion distribution inside magnetospheres: Mercury, Earth Plasma distributions in the interaction region: Mars, Venus, MEX data Outflowing planetary ions: Mars Global neutral gas / dust distribution: Europe, Phobos torus, Saturn rings Surface interaction. Sputtered ENAs. Precipitation maps: Mercury, Moon Atmosphere interaction. Backscattered ENAs. Precipitation maps: Mars, MEX data Global dynamics: Mercury, Earth Conclusion Planetary ENA experiments New frontiers for planetary ENA imaging

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 3 Planetary ENA experiments (out side the Earth) PlanetMission / InstrumentRemark MarsMars Express, 2003 ASPERA eV - few keV VenusVenus Express, 2005 ASPERA eV - few keV JupiterCassini, 1997/INCA Voyager E > 20 keV Non-ENA dedicated (Kirsch et al., 1981) SaturnCassini, 1997/INCA Voyager E > 20 keV Non-ENA dedicated (Kirsch et al., 1981) MoonChandrayaan-1, 2008 SARA 10 eV - 3 keV Sputtering and backscattered ENAs MercuryBepi Colombo, 2013 MPO / SELENA MMO / ENA Shutter techn. 20 eV keV Replica of SARA

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 4 ENA introduction (1) No gravitation banding: E >> E escape, i.e., E escape (O) = 2.4 eV for Mars Processes resulting in ENA production in planetary environments Neutralization: charge - exchange on neutral gas and dust Surface (upper atmosphere) interaction: backscattering, sputtering, and recoil B0B0 A+A+ A0A0 neutral gas A+A+ A0A0 dust A+A+ A0A0 surface / atmosphere A+A+ B0B0 surface (B) / atmosphere Ion neutralization Surface / atmosphere interaction A+A+ C0C0 surface (B) / atmosphere

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 5 ENA introduction (2) ENAs propagate as photons: imaging of populations resulting in ENAs Neutralization (CX): Advantages: Provides ion or neutral gas (dust) global distribution Drawback: line-of-sigh integrals => inversion problem, extra assumptions Surface interaction: Advantages: Provides the integral flux at the surface (cm -2 s -1 eV -1 ), no inversion. Surface (upper atmosphre) works a display Drawback: Loss spectral information

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 6 ENA introduction. Non magnetized planets (3) Direct interaction with the upper atmosphere/ionosphere: Venus/Mars. ENA diagnostic to reveal: Morphology of the interaction region Global dynamics of the interaction region Precipitation onto the upper atmosphere (backscattering) Direct interaction with the surface: Moon. ENA diagnostic to reveal: Morphology of the interaction region Space weather effects

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 7 DIAGNOSTIC OF THE INTERACTION REGION MORPHOLOGY (MARS/VENUS)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 8 ENAs at Mars

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 9

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 10

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 11

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 12 Shocked SW ENAs. NPI observations

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 13 NPI ENA observations vs. simulations ENA signal

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 14 Inversion results // Solar wind parameters (non-fitted) pars[0] = 2.5; // Solar wind proton density [#/cm^3] pars[1] = 400e3; // Solar wind speed [m/s] pars[2] = 10; // Solar wind temperature [eV] // Geometry parameters (fiitted) pars[3] = ; // alpha, magnetopause penetration pars[4] = 0.55; // x_0, Bow shock position [Rm] pars[5] = 1.35; // x_nose, magnetopause position [Rm]

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 15 Futaana, et al, 2006

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 16 Subsolar jet (cone) Futaana, et al, 2006

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 17 Non-observation of O-ENAs Oxygen ENAs have NOT been observed by ASPERA-3: fluxes below the instrument limit (2.5·10 4 cm -2 sr -1 s -1 ) Galli et al.,. 2006). Scaling the escape rate gives Q(O+) < s -1. In agreement with the direct escape measurements.

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 18 GLOBAL DYNAMICS

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 19 Response to an interplanetary shock (1) Futaana, Barabash et al., 2006

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 20 Response to an interplanetary shock (2) Futaana, Barabash et al., 2006

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 21 Response to an interplanetary shock (3) Futaana, Barabash et al., 2006

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 22 Response to an interplanetary shock (4) Futaana, Barabash et al., 2006

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 23 ENA jet oscillations TT Oscillation periods: 50 and 300 sec Depth ~20-30% Grigoriev et al., Space Science Rev.,, 2006

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 24 Diagnostic of the dynamics Time scale of the interaction region reconfiguration against interplanetary disturbances. Time scale of the local instabilities at the induced magnetospehere boundary / plasma oscillations in the magnetospheath.

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 25 DIAGNOSTIC OF THE PLASMA PRECIPITATION

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 26 Backscattering ENAs. Simulations (1) Monte Carlo simulation of proton / ENA backscattering (Kallio and Barabash, 2000)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 27 Backscattering ENAs. Simulations (2) Backscattering hydrogen velocity distribution (Kallio and Barabash, 2000) Albedo ~60%, Energy loss ~40%

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 28 Backscattering H-ENAs. ENA albedo Backscattered hydrogen (ENA albedo) Precipitating particles (ENAs and protons) experience elastic and non- elastic (CX, excitation) collisions with the upper atmosphere gases (mostly O and CO 2 ) Kallio and Barabash (2001) predicted backscattering H atoms caused by hydrogen ENA precipitation onto the upper atmosphere. ENA energy ≈ 0.6 x precipitating energy ENA albedo ≈ 0.6

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 29 Backscattering H-ENAs. Observations (1) Backscattering H-ENAs H-ENAs from subsolar region

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 30 H atom Energy: Subsolar ENAs: 2.14 keV Backscattering: 1.36 keV Compare with ~2 keV shocked solar wind as measured by IMA in the magnetosheath Flux: (8 - 14)·10 6 cm -2 sr -1 s -1 Backscattering H-ENAs. Observations (2) 160 ns 200 ns Backscattering H-ENAs. ENA albedo H-ENAs from subsolar region. ENA jet 27 Feb TOF, ns

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 31 Backscattering H-ENAs. Precipitation maps Backscattered ENAs flux is proportional to the precipitation flux and can be used to construct precipitation maps NPD FoV longitude - latitude coverage. Orbit 500. July Precipitation map NPD1 - Dir0. Orbit 500. July

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 32 DIAGNOSTIC OF THE INTERACTION REGION MORPHOLOGY (THE MOON)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 33

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 34 Sputtered atoms (Johnson and Baragiola, 1991)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 35 Minimagnetosphere (Lin et., 1998)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 36 Imaging magnetic anomalies Orbit motion FoV (channels)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 37 Sputtered atoms Angular distribution does not depend on the impinging ion flux angular distribution (statistically). Atoms are not affected by electromagnetic forces and gravitation (E >> E escape = 1.7 eV for Fe). Sputtered atoms: O, Na, Al, Si, K, Ca, Ti, Mn, Fe Atom sputtering conserves stoichiometry - an analytical tool in the lab. Thomson - Siegmund spectrum:

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 38

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 39 DIAGNOSTIC OF SPACE WEATHERING (THE MOON)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 40 Space weathering Space weathering: changing albedo (visible, IR) under space environment effects, e.g., particle and photon flux, mmicrometeor bombardment Swirl - like albedo marking in Crisium impact basin antipodal region (Reiner Gamma region, Lin et al., 1988, Hood et al. 1999)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 41 ENA emissions at Mars: simulations and observations on Mars Express Stas Barabash and Mats Holmström Swedish Institute of Space Physics, Kiruna, Sweden

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 42 ENA production at Mars Charge - exchange on the exosphere (extended due to low gravity!) Upstream solar wind Shocked solar wind Planetary oxygen ions Backscattering of the solar wind protons

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 43 CX SW ENAs. Simulations (1) Highest neutral gas density Plasma distribution? Bow shock The boundary CX: undisturbed solar wind on the extended exosphere CX: shocked solar wind on the exosphere SW void Mars Solar wind Typical morphology: neutral solar wind, ENA fluxes tangential to flow lines

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 44 CX SW ENAs. Simulations (2) Holmström et al., 2002

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 45 CX oxygen ENAs. Simulations (1) Oxygen ion distribution (Test partciles in the empirical model, Kallio, 1997; Barabash et al., 2002)

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 46 CX oxygen ENAs. Simulations (2) O - ENA fluxes keV (Barabash et al., 2002) Typical morphology: subsolar jet and tailward flux

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 47 MEX ENA sensors NPD NPI

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 48 MEX ENA observations Global structure of the solar wind interaction region Shape of the solar wind void (NPI, Herbert Gunell et al., 2005) Subsolar ENA jet (NPD, Futaana et al., 2005) Oscillations of the ENA jet (NPD, Futaana et al., 2005) Solar wind - atmosphere interaction Occultation of the neutral solar wind at Mars (NPI, Klas Brinkfeld et al., 2005) Solar wind proton precipitation onto the atmosphere: ENA albedo (backscattered ENAs) (NPD, Futaana et al., 2005) Oxygen ENAs are not yet identified in the available data.

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 49 Ion distributions inside magnetospheres. Pretty ENA images Earth’s ring current, outer vantage point IMAGE / HENA, courtesy D. Mitchell, APL Earth’s ring current, low altitude polar vantage point Astrid-1 / PIPPI, Barabash et al., 1999 Earth’s ring current, from below Astrid-1 / PIPPI, C:son Brand et al., 2001 Mercury magnetosphere, 30 keV protons, polor vantage point, Simulations, Barabash et al., 2001

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 50 Ion distributions inside magnetospheres. Science Ring current physics Dynamics Global morphology during different conditions Composition (H, He, O) variations Storm / substorm relations Ion dynamics during substorms injections Plasma sheet depolarization M - I coupling (from deduced ion distribution) Microphysics though P/A distribution reconstruction. Yet, it requires high angular resolution IMAGE / HENA Movie, courtesy Pontus C:son Brandt, APL

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 51 Plasma distributions in the interaction region ENA imaging non-magnetized planets, Mars and Venus. Simulations by Kallio et al., 1998; Holmström et at, 2002; Mura et al., 2002; Lammer et al., 2002; Gunell et al., The main scientific objective: determined the structure of the interaction region ENA detector ENA

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 52 Plasma distributions in the interaction region. Mars Simulations by Holmström et al., 2002

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 53 Plasma distributions in the interaction region. Venus Simulations by Gunell et al., 2004

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 54 ENA Occultation at Mars (1) v Mars Photon flux Solar wind / ENA flux  ~ 4°  x10 7 Simulated ENA flux at SZA=160° Holmström et al [2001] Interaction with the upper atmosphere - scattering

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 55 ENA Occultation at Mars (2) Scattered photons ENA Background noise S/C in Mars umbra S/C in Mars penumbra 40 Sector 21 Observed flux 2·10 5 cm -2 s -1 is consistent with 0.3% of the solar wind flux

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 56 Imaging outflowing planetary ions Planetary ions escaping the non-magnetic atmospheric bodies (Mars, Venus, comets) charge - exchange with the exospheric neutrals and are converted to ENAs. O-ENAs images visualize the instantaneous distribution of O + ions. ENA imaging is the most promising way to determine the total escape rate, the key number for understanding solar wind effects on the atmospheric evolution. In-situ measurements require assumptions on global distributions. O- ENA imaging is being attempted on Mars Express / ASPERA-3.

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 57 Neutral gas distribution (1). Europa torus Neutral gas immersed in the background of charged particles shines in ENAs. Mauk et al., 2003 observed the Europa torus around Jupiter in ENAs (Cassini/INCA). Main finding: Europa gas cloud (most probable from ice sputtering) is comparable with the one from the volcanic moon Io. The Titan exosphere immersed inside the Saturn radiation belts is also shining in ENAs (simulations by Dandouras and Amsif, 1999 in preparation for the Cassini / INCA experiment). Raw image Point source (calibration) Deconvolved image Europa torus Jupiter

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 58 Neutral gas distribution (2). Phobos torus Weakly outgassing (mostly water, Q~10 23 s -1 ) Phobos results in a torus immersed in the solar wind flowing around Mars. The torus is a possible source of low energy ( < 1 keV) ENAs (Mura et al., 2001). Mars Express / ASPERA-3 will attempt imaging to constrain the outgassing rate and obtain the radial profile. Only Mars exosphereOnly Phobos torus Mars + Phobos Obstacle

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 59 Ion / dust neutralization. Saturn radiation belts / rings Mauk et al., Simulations of ENA signal from F-ring of Saturn in the frame Cassini / INCA experiment. F - ring looks like a circular line source. Science: Trapped ion radial diffusion rate Particle size constraining from energy spectrum Efficiency of ion / ring interactions H+H+ H 0, ~ 50 keV, > 50% dust particle ~0.5  m

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 60 Surface interaction. Sputtered / Backscattered ENA Energy spectrum follows the Thompson - Sigmund formula: Typical fluxes (input flux dependent, integrate within 10% energy band, eV): cm -2 s -1 sr -1 Mass composition reflects the surface elemental composition. For Mercury: O, Na, K, Ca, Mg, Al, Si Precipitating ions (H+) can be also backscattered as H-ENAs. Sputtered / backscattered ENA imaging reveals: Precipitation maps similarly to auroral display (ENA - “aurora”) Inputs to surface - bound exospheres (Mercury, Moon) Na image by Potter and Morgan, Hot spots: precipitation regions or minerological feature?

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 61 Surface interaction. ENA - aurora on Mercury Ion precipitation maps Sputtered Na - ENA images ( eV) H+, solar windH+, Tail source, 30keV Na+, photoions

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 62 Surface interaction. Minimagnetospshres on the Moon The Moon surface is exposed to the solar wind flux except areas of strong remanent magnetic fields, minimagnetopsheres (Lin et al., 1998). The minimagnetospheres will be “visible” on sputtered / backscattered ENA images as voids. ENA imaging is the only technique capable of visualizing minimagnetospsheres. Simulations by Futaana, Barabash, and Holmström, 2004 for a void of 100 km diameter and a virtual ENA detector at 100 km height.

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 63 Atmosphere interaction. Backscattering H-ENAs Backscattered hydrogen (ENA albedo) Precipitating protons and ENA from SW Kallio and Barabash (2001) predicted backscattering H atoms caused by hydrogen ENA and solar wind proton precipitation onto the upper atmosphere of Mars (at Venus the similar process operates). E bs /E nsw ≈ 0.6 F bs /F nsw ≈ 0.6

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 64 Atmosphere interaction. Mars Express results Subsolar point NPD1 FoV NPD2 FoV

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 65 H atom Energy: keV ( ns) Compare with ~2 keV shocked solar wind as measured by IMA in the magnetosheath Flux: (8 - 14)·10 6 cm -2 sr -1 s -1 Only direct precipitation of the solar wind down to the exobase altitude (250 km) can be accounted for such high fluxes! In agreement with IMA ion observations of the deep solar wind penetration. Stong energy and momentum deposition to the upper atmosphere. Atmosphere interaction. Mars Express results 160 ns 180 ns

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 66 Global dynamics. D st and total ENA production ENA flux at a vantage point is a function of the global ion (neutral gas) contain => global dynamics of the system. Jorgensen et al., 1997 POLAR / IPS observations (17.5 …~ 100 keV) ENA signal time variation follows moderate storm dynamics. The characteristic time scales can be determined from a single point ENA measurements. Jorgensen et al., 2001 also reported short-lived ENA bursts associated with substorm signatures D st index and POLAR ENA signal Recovery phase Main phase

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 67 Global dynamics (2). Fine time variations Ebihara, Barabash, Ejiri, Simulation of total ENA production ENA production for E < 30 keV follows D st quite precisely High energy ENA variations reflect particle motion in the inner magnetosphere Variations with drift angular frequency (~1 hour) and beatings caused by finite energy window

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 68 Global dynamics. Application to Mercury Problem of distinguishing spatial and temporal variations in compact magnetospheres (small size, short reconfiguration time): necessity of global techniques. Mercury case: substorm time ~1 min, one substorm per 5 min (Siscoe et at., 1975) ENA signal profile is a sequence of flashes lasting for ~ 1min each. For studies of global dynamics the details of the generation mechanisms are not important. Time ENA signal intensity How often? 5 min? How long is recovery? How fast is injection? How long? 1 min?

EuroPlanet, Sept. 22, 2006Stas Barabash, Page 69 New frontiers for planetary ENA imaging Priorities for new investigations and new experimental challenges Earth High angular resolution (~1° x 1° / pixel) for all energy ranges: pitch - angle effects and microphysics Non-atmospheric bodies (Mercury, Moon, asteroids) ENA imaging mass spectroscopy (M/  M ~ 20…40): surface - plasma interactions Non-magnetic atmospheric bodies (Mars, Venus, comets) Low energy ENA imaging (tens eV) with moderate mass resolution: escape processes