Flygteknik-2010 – Norra Latin Stockholm, Oct Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P. Eliasson 2, T. Grabowski 3, J. Vos 4 1 Royal Institute of Technology (KTH), Stockholm, , Sweden 2 Swedish Defence Research Institute (FOI), Stockholm, , Sweden 3 Warsaw University of Technology (WUT), Warsaw, Poland 4 CFS Engineering (CFSE), 1015 Lausanne Switzerland
Flygteknik-2010 – Norra Latin Stockholm, Oct Contents CEASIOM Design Tool – outcome of SimSAC Analyze/improve flight dynamics Specification & Design to Canard Configuration Creation Tabular Aero Data Comparison with WT data Prediction Flying Qualities - Low & transonic speeds Static stability – static margin: tradeoffs Dynamic stability – linear & nonlinear (flight simulator) Augmented Stability Demo Flight simulation
Flygteknik-2010 – Norra Latin Stockholm, Oct SimSAC EU-Project Partnership NOPARTNERCOUNTRY 1KTHSE 2Alenia AeronauticaIT 3Bristol UniversityUK 4CERFACSFR 5CFS EngineeringCH 6Dassault AviationFR 7DLRDE 8EADS-MDE 9FOISE 10Liverpool UniversityUK 11J2 Aircraft SolutionsUK 12ONERAFR 13Politecnico MilanoIT 14Saab AerosystemsSE 15TsAGIRU 16VZLUCZ 17Warsaw University of Technology PL EU FP 6 STREP project Project coordinator: Prof. A. Rizzi, KTH SimSAC: Simulating Aircraft Stability and Control Characteristics for Use in Conceptual Design
Flygteknik-2010 – Norra Latin Stockholm, Oct SimSAC Goal: Design Flight Control System Earlier Design Conceptual Phase Preliminary Use of …Handbook methods Linear Aerodyn ROMCFD & Optimize WT testingFlight testing standard Very highhighlowvery lowAero data SimSAC Very lowhigh medium Compute Aerodyn Dataset variable-fidelity CFD predict flight dynamics Use in conceptual design Aerodynamic Tools for S&C
Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Design Tool Flight Dynamics
Flygteknik-2010 – Norra Latin Stockholm, Oct TCR Design: SAAB Specification
Flygteknik-2010 – Norra Latin Stockholm, Oct Configuration Re-Design Original TCR: poor trim ability large , Different configurations investigated Wing further fore (design parameter) Three lifting surfaces All-moving canard (vary location & size) Design of wind tunnel model One moving surface for longitudinal control No engines
Flygteknik-2010 – Norra Latin Stockholm, Oct Design Choice – Static stability margin Trim condition CG ac M Static margin L Static stable Ma = AC = 38.9m Kn = 4.7%13.6%19.5%32.2% CG = 38.3m Kn grows with Ma Response heavy at high speed Dilemma !
Flygteknik-2010 – Norra Latin Stockholm, Oct Predict Flying Qualities: solve Flight Dyn Eqs n s – state vector (8) n A – inertia matrix n F – general forces Linearize ( stability derivatives...)
Flygteknik-2010 – Norra Latin Stockholm, Oct F aero Interpolation Process - Kriging Aero-data Database constructed DACE Kriging toolbox: Linear base model, Input & output scaled (0,1) Manual choice corr. length Data from source Mach α
Flygteknik-2010 – Norra Latin Stockholm, Oct Total Length m Total Wingspan (bref) m Total Canard Span m Total Height m Fuselage Diameter 3.70 m MAC 16.06/11.77 m, Wing reference area Sref = 489 m 2, Reference point, moment x = m, z = 0 m Center of gravity x = m, z = 0 m W&B/ACBuilder: J.Munoz, S Ricci,... Weight, Inertia & Balance
Flygteknik-2010 – Norra Latin Stockholm, Oct Control authority: Canard stall WT data Comparison C m ( ) for zero canard deflection Aero Data & Handling Qualities – Longitudinal Dynamics
Flygteknik-2010 – Norra Latin Stockholm, Oct m/s, 1km – 3km M 0.35 – 0.50 M.35 M.50 Canard Phugoid Short period Trim & Flying Qualities – low speed Trim Sensitivity small
Flygteknik-2010 – Norra Latin Stockholm, Oct M.65 Canard M=1 Trim & Flying Qualities – transonic speed Phugoid Short period Transonic dip
Flygteknik-2010 – Norra Latin Stockholm, Oct ms Flow Physics transonic dip
Flygteknik-2010 – Norra Latin Stockholm, Oct Eigenvalues 276 m/s 10km, = 0.5 All modes stable (barely...) Flight simulation = -0.3 o : Slooowly damped = -3.0 o : See-saw pitchup... Cobra manuver AoA attitude Linear & NonLinear Stability – Stick fixed Time Histories Wind gust - disturb α small large
Flygteknik-2010 – Norra Latin Stockholm, Oct Augmented Stability SAS OFF SAS ON
Flygteknik-2010 – Norra Latin Stockholm, Oct ON OFF ON OFF ON Phugoid Short Period Dutch Roll Flying Qualities with Augmentation – low speed
Flygteknik-2010 – Norra Latin Stockholm, Oct Conclusions n CEASIOM proven useful ! –Trim & static margin chosen correctly –Good canard sizing & placement Verified by WT no major pitfalls –Stability Augmentation good flying qualities Low-speed stick-fixed qualities improved Transonic disturbance damped Canard authority sufficient –Allows concept designer to work with control tools to sort out: What can be fixed by control system What changes in configuration is needed n CEASIOM lives on ! –Community of users Open software –Visit –Join us !
Flygteknik-2010 – Norra Latin Stockholm, Oct Thanks For Your Attention !
Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Predicts T-tail Flutter Stick Model : beam elements & lump masses Fin bending mode Hz Hor. Tail roll mode Hz Flutter frequency [Hz] Mach SMARTCADNASTRAN® V-g diagrams, sea-level Clamped node
Flygteknik-2010 – Norra Latin Stockholm, Oct Aircraft Motion: Non-Linear Dynamical System n s – state vector (8) n A – inertia matrix n F – general forces linearize
Flygteknik-2010 – Norra Latin Stockholm, Oct WT Model
Flygteknik-2010 – Norra Latin Stockholm, Oct M.97 Airspeed, Altitude & Mach number
Flygteknik-2010 – Norra Latin Stockholm, Oct What if done by Handbook Method Raymer volume coefficient Handbook methods not applicable to unconventional configs. such as the TCR ~ 0.1 l C = 28 m S C = 60 m 2 MAC = m S = 489 m 2 c C ≈ 0.29
Flygteknik-2010 – Norra Latin Stockholm, Oct TCR Design: Specification MTOW~ 180 t, R~ km, No Pax~ 200 M c = 0.97 ‘ Loose ideas’ to be Worked out: Payload
Flygteknik-2010 – Norra Latin Stockholm, Oct Fused Aerodynamic Dataset Mach
Flygteknik-2010 – Norra Latin Stockholm, Oct
Flygteknik-2010 – Norra Latin Stockholm, Oct Fused Aerodynamic Dataset Mach
Flygteknik-2010 – Norra Latin Stockholm, Oct n Evolution of pitching moment & lift coefficients with Mach/speed n Also breakpoints – no second-opinion – do we believe CFD ?? TCR - CFDsim - Mach dependence
Flygteknik-2010 – Norra Latin Stockholm, Oct Design Loops
Flygteknik-2010 – Norra Latin Stockholm, Oct Design Process
Flygteknik-2010 – Norra Latin Stockholm, Oct Flight Simulation – Transonic Cruise
Flygteknik-2010 – Norra Latin Stockholm, Oct Baseline Design n Initial sizing with Saab in-house method. n Baseline design: input for CEASIOM.
Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Design Analysis: XML params
Flygteknik-2010 – Norra Latin Stockholm, Oct TCR T-tail flutter Modal frequencies [Hz] Mode SMARTCADNASTRAN® Flutter dynamic pressure [Pa] Mach SMARTCADNASTRAN® ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙10 4 Flutter frequency [Hz] Mach SMARTCADNASTRAN® V-g diagrams, M ∞ =0.50, sea-level Clamped node Stick Model : beam elements & lump masses Fin bending mode Hz Hor. Tail roll mode Hz
Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2] trim [deg] trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C TCR-C2TCR-C17
Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2] trim [deg] trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C TCR-C17TCR-C8
Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2] trim [deg] trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C C, static margin S C distance W-C
Flygteknik-2010 – Norra Latin Stockholm, Oct Construct Windtunnel Model Exterior shape - Export IGES PoliMi designed interior structure