Flygteknik-2010 – Norra Latin Stockholm, 18-19 Oct 2010 1 Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P.

Slides:



Advertisements
Similar presentations
Gliders Flight Stability
Advertisements

Aircraft Stability and Control AE 1350 Lecture Notes #11
Timothy Burkhard - Phil Barat - John Gyurics
EWEA Annual Event 2013 Vienna February, 4-7, 2013
Basic Aerodynamic Theory
SAE Aero Design Presentation Oct. 30 th Wind Tunnel Testing and Modification Why use wind tunnels? They’re cheaper than most computational fluid.
October 28, 2011 Christopher Schumacher (Team Lead) Brian Douglas Christopher Erickson Brad Lester Nathan Love Patrick Mischke Traci Moe Vince Zander.
Guidelines Presentation. Aircraft Aim & Judging The aircraft needs to transport the mirror segments of the ESO European Extremely Large Telescope, being.
Aerodynamic Modeling for the Ohio University UAV For the Quarterly Review of the NASA/FAA Joint University Program for Air Transportation Research Wednesday.
Stability and Control.
Click to edit Master title style Click to edit Master text styles Second level Third level Fourth level Fifth level 1.
DR2 Stability and Control Preliminary Design Review and Performance PDR October 24, 2000 Presented By: Christopher Peters …and that’s cool Team DR2 Chris.
February 24, Final Presentation AAE Final Presentation Backstepping Based Flight Control Asif Hossain.
Dane BatemaBenoit Blier Drew Capps Patricia Roman Kyle Ryan Audrey Serra John TapeeCarlos Vergara Team 1: Structures 1 PDR Team “Canard” October 12th,
March 10, Dynamics & Controls 2 PDR Michael Caldwell Jeff Haddin Asif Hossain James Kobyra John McKinnis Kathleen Mondino Andrew Rodenbeck Jason.
Lesson 37 Longitudinal Static Stability
Aero Engineering 315 Lesson 39 Dynamic Stability.
Review Chapter 12. Fundamental Flight Maneuvers Straight and Level Turns Climbs Descents.
LESSON ld05 Rocket Stability
Stability & Control Chapter 6 Lecture 12.
Introduction to Aeronautical Engineering
The Four Forces of Flight
Subject: Science Topic: Flight Technology Grades: Teacher Notes.
Modern Equipment General Aviation (MEGA) Aircraft Progress Report Flavio Poehlmann-Martins & Probal Mitra January 11, 2002 MAE 439 Prof. R. Stengel Prof.
Rotational Motion Stability and Control.
Model Reduction for Linear and Nonlinear Gust Loads Analysis A. Da Ronch, N.D. Tantaroudas, S.Timme and K.J. Badcock University of Liverpool, U.K. AIAA.
AEROELASTIC MODELING OF A FLEXIBLE WING FOR WIND TUNNEL FLUTTER TEST WESTIN, Michelle Fernandino; GÓES, Luiz Carlos Sandoval; SILVA, Roberto Gil Annes.
Aerodynamics and Aeroelastics, WP 2
ZONAIR Analysis for JSF Flight Loads
Formulation of a complete structural uncertainty model for robust flutter prediction Brian Danowsky Staff Engineer, Research Systems Technology, Inc.,
Introduction Aerodynamic Performance Analysis of A Non Planar C Wing using Experimental and Numerical Tools Mano Prakash R., Manoj Kumar B., Lakshmi Narayanan.
Recent and Future Research for Bird-like Flapping MAVs of NPU Prof. B.F.Song Aeronautics School of Northwestern Polytechnical University.
1 Efficient Mode Superposition Methods for Non-Classically Damped System Sang-Won Cho, Graduate Student, KAIST, Korea Ju-Won Oh, Professor, Hannam University,
Group 10 Dimitrios Arnaoutis Alessandro Cuomo Gustavo Krupa Jordan Taligoski David Williams 1.
© 2011 Autodesk Freely licensed for use by educational institutions. Reuse and changes require a note indicating that content has been modified from the.
Reduction of Nonlinear Models for Control Applications A. Da Ronch, N.D. Tantaroudas, and K.J. Badcock University of Liverpool, U.K. AIAA Paper
Compound Aircraft Transport 1) Mx – 1018 project B-29/F-84 2) Tom-Tom Project B-36F/F-84 Model Problems of Compound Flight Configuration IConfiguration.
Smart Icing Systems Review, June 19-20, Aircraft Autopilot Studies Petros Voulgaris Vikrant Sharma University of Illinois.
The flutter analysis of the JS1 glider
Recent developments in the CEASIOM framework using the common language CPACS Good afternoon, my name is Marco Cristofaro and the work that I will present.
Gliders in Flight Stability for Straight and Level Flight.
Team 5 Aerodynamics QDR 2 Presented By: Christian Naylor Charles Reyzer.
February 24, Dynamics & Controls 1 PDR Michael Caldwell Jeff Haddin Asif Hossain James Kobyra John McKinnis Kathleen Mondino Andrew Rodenbeck Jason.
Theory of Flight All are demonstrated by the flight of the bird!
DEWEK 2004 Lecture by Aero Dynamik Consult GmbH, Dipl. Ing. Stefan Kleinhansl ADCoS – A Nonlinear Aeroelastic Code for the Complete Dynamic Simulation.
Aerodynamic Design of a Light Aircraft
MSC Software India User Conference 2012 September 13-14, 2012 Bangalore, India CFD Based Frequency Domain Flutter Analysis using MSC Nastran Ashit Kumar.
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 4: Slide 1 Chapter 4 Forces and Moments.
AAE556 Lectures 34,35 The p-k method, a modern alternative to V-g Purdue Aeroelasticity 1.
Dynamics & Controls PDR 2
Forces and stability in aircraft
Short introduction to aeroelasticity
DYNAMICS & CONTROL PDR 1 TEAM 4
Dynamics & Controls PDR 1
Welcome W 10.1 Introduction to Engineering Design II (IE 202)
Aircraft Stability and Control
Author: Harry L. Whitehead
LESSON ld05 Rocket Stability
Dynamics and Control PDR 2
Model Problems of Compound Flight
Stability for Straight and Level Flight
DYNAMICS & CONTROL QDR 3 TEAM 4
Synthesis of Motion from Simple Animations
Stability and Control Non-Dimensional Derivatives Part 1 Greg Marien
The Evolution of Simulator Data Packages and QTG’s
Grab their Attention with Active Learning!
LESSON ld05 Rocket Stability
Presentation Name Stability for Straight and Level Flight
Stability for Straight and Level Flight
Dynamics & Controls PDR 2
Presentation transcript:

Flygteknik-2010 – Norra Latin Stockholm, Oct Virtual-Aircraft Design & Control of TransCRuiser – S&C study with CEASIOM Arthur Rizzi 1, P. Eliasson 2, T. Grabowski 3, J. Vos 4 1 Royal Institute of Technology (KTH), Stockholm, , Sweden 2 Swedish Defence Research Institute (FOI), Stockholm, , Sweden 3 Warsaw University of Technology (WUT), Warsaw, Poland 4 CFS Engineering (CFSE), 1015 Lausanne Switzerland

Flygteknik-2010 – Norra Latin Stockholm, Oct Contents  CEASIOM Design Tool – outcome of SimSAC  Analyze/improve flight dynamics  Specification & Design to Canard Configuration  Creation Tabular Aero Data  Comparison with WT data  Prediction Flying Qualities - Low & transonic speeds  Static stability – static margin: tradeoffs  Dynamic stability – linear & nonlinear (flight simulator)  Augmented Stability  Demo  Flight simulation

Flygteknik-2010 – Norra Latin Stockholm, Oct SimSAC EU-Project Partnership NOPARTNERCOUNTRY 1KTHSE 2Alenia AeronauticaIT 3Bristol UniversityUK 4CERFACSFR 5CFS EngineeringCH 6Dassault AviationFR 7DLRDE 8EADS-MDE 9FOISE 10Liverpool UniversityUK 11J2 Aircraft SolutionsUK 12ONERAFR 13Politecnico MilanoIT 14Saab AerosystemsSE 15TsAGIRU 16VZLUCZ 17Warsaw University of Technology PL EU FP 6 STREP project Project coordinator: Prof. A. Rizzi, KTH SimSAC: Simulating Aircraft Stability and Control Characteristics for Use in Conceptual Design

Flygteknik-2010 – Norra Latin Stockholm, Oct SimSAC Goal: Design Flight Control System Earlier Design Conceptual Phase Preliminary Use of …Handbook methods Linear Aerodyn ROMCFD & Optimize WT testingFlight testing standard Very highhighlowvery lowAero data SimSAC Very lowhigh medium Compute Aerodyn Dataset variable-fidelity CFD predict flight dynamics Use in conceptual design Aerodynamic Tools for S&C

Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Design Tool Flight Dynamics

Flygteknik-2010 – Norra Latin Stockholm, Oct TCR Design: SAAB Specification

Flygteknik-2010 – Norra Latin Stockholm, Oct Configuration Re-Design  Original TCR: poor trim ability  large ,   Different configurations investigated  Wing further fore (design parameter)  Three lifting surfaces  All-moving canard (vary location & size)  Design of wind tunnel model  One moving surface for longitudinal control  No engines

Flygteknik-2010 – Norra Latin Stockholm, Oct Design Choice – Static stability margin Trim condition CG ac M Static margin L Static stable Ma = AC = 38.9m Kn = 4.7%13.6%19.5%32.2% CG = 38.3m Kn grows with Ma Response heavy at high speed Dilemma !

Flygteknik-2010 – Norra Latin Stockholm, Oct Predict Flying Qualities: solve Flight Dyn Eqs n s – state vector (8) n A – inertia matrix n F – general forces Linearize (  stability derivatives...)

Flygteknik-2010 – Norra Latin Stockholm, Oct F aero Interpolation Process - Kriging Aero-data Database constructed DACE Kriging toolbox: Linear base model, Input & output scaled (0,1) Manual choice corr. length Data from source Mach α

Flygteknik-2010 – Norra Latin Stockholm, Oct Total Length m Total Wingspan (bref) m Total Canard Span m Total Height m Fuselage Diameter 3.70 m MAC 16.06/11.77 m, Wing reference area Sref = 489 m 2, Reference point, moment x = m, z = 0 m Center of gravity x = m, z = 0 m W&B/ACBuilder: J.Munoz, S Ricci,... Weight, Inertia & Balance

Flygteknik-2010 – Norra Latin Stockholm, Oct Control authority: Canard stall WT data Comparison C m (  ) for zero canard deflection Aero Data & Handling Qualities – Longitudinal Dynamics

Flygteknik-2010 – Norra Latin Stockholm, Oct m/s, 1km – 3km M 0.35 – 0.50 M.35 M.50  Canard  Phugoid Short period Trim & Flying Qualities – low speed Trim Sensitivity small

Flygteknik-2010 – Norra Latin Stockholm, Oct M.65  Canard M=1  Trim & Flying Qualities – transonic speed Phugoid  Short period Transonic dip

Flygteknik-2010 – Norra Latin Stockholm, Oct ms Flow Physics  transonic dip

Flygteknik-2010 – Norra Latin Stockholm, Oct Eigenvalues 276 m/s 10km,  = 0.5  All modes stable (barely...) Flight simulation  = -0.3 o : Slooowly damped  = -3.0 o : See-saw pitchup... Cobra manuver  AoA  attitude Linear & NonLinear Stability – Stick fixed Time Histories Wind gust - disturb α  small  large

Flygteknik-2010 – Norra Latin Stockholm, Oct Augmented Stability SAS OFF SAS ON    

Flygteknik-2010 – Norra Latin Stockholm, Oct ON OFF ON OFF ON Phugoid Short Period Dutch Roll Flying Qualities with Augmentation – low speed

Flygteknik-2010 – Norra Latin Stockholm, Oct Conclusions n CEASIOM proven useful ! –Trim & static margin chosen correctly –Good canard sizing & placement Verified by WT  no major pitfalls –Stability Augmentation  good flying qualities Low-speed stick-fixed qualities improved Transonic disturbance damped Canard authority sufficient –Allows concept designer to work with control tools to sort out: What can be fixed by control system What changes in configuration is needed n CEASIOM lives on ! –Community of users  Open software –Visit –Join us !

Flygteknik-2010 – Norra Latin Stockholm, Oct Thanks For Your Attention !

Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Predicts T-tail Flutter Stick Model : beam elements & lump masses Fin bending mode Hz Hor. Tail roll mode Hz Flutter frequency [Hz] Mach SMARTCADNASTRAN® V-g diagrams, sea-level Clamped node

Flygteknik-2010 – Norra Latin Stockholm, Oct Aircraft Motion: Non-Linear Dynamical System n s – state vector (8) n A – inertia matrix n F – general forces linearize

Flygteknik-2010 – Norra Latin Stockholm, Oct WT Model

Flygteknik-2010 – Norra Latin Stockholm, Oct M.97 Airspeed, Altitude & Mach number

Flygteknik-2010 – Norra Latin Stockholm, Oct What if done by Handbook Method Raymer volume coefficient Handbook methods not applicable to unconventional configs. such as the TCR ~ 0.1 l C = 28 m S C = 60 m 2 MAC = m S = 489 m 2 c C ≈ 0.29

Flygteknik-2010 – Norra Latin Stockholm, Oct TCR Design: Specification MTOW~ 180 t, R~ km, No Pax~ 200 M c = 0.97 ‘ Loose ideas’ to be Worked out: Payload

Flygteknik-2010 – Norra Latin Stockholm, Oct Fused Aerodynamic Dataset  Mach

Flygteknik-2010 – Norra Latin Stockholm, Oct

Flygteknik-2010 – Norra Latin Stockholm, Oct Fused Aerodynamic Dataset  Mach

Flygteknik-2010 – Norra Latin Stockholm, Oct n Evolution of pitching moment & lift coefficients with Mach/speed n Also breakpoints – no second-opinion – do we believe CFD ?? TCR - CFDsim - Mach dependence

Flygteknik-2010 – Norra Latin Stockholm, Oct Design Loops

Flygteknik-2010 – Norra Latin Stockholm, Oct Design Process

Flygteknik-2010 – Norra Latin Stockholm, Oct Flight Simulation – Transonic Cruise

Flygteknik-2010 – Norra Latin Stockholm, Oct Baseline Design n Initial sizing with Saab in-house method. n Baseline design: input for CEASIOM.

Flygteknik-2010 – Norra Latin Stockholm, Oct CEASIOM Design Analysis: XML params

Flygteknik-2010 – Norra Latin Stockholm, Oct TCR T-tail flutter Modal frequencies [Hz] Mode SMARTCADNASTRAN® Flutter dynamic pressure [Pa] Mach SMARTCADNASTRAN® ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙10 4 Flutter frequency [Hz] Mach SMARTCADNASTRAN® V-g diagrams, M ∞ =0.50, sea-level Clamped node Stick Model : beam elements & lump masses Fin bending mode Hz Hor. Tail roll mode Hz

Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C TCR-C2TCR-C17

Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C TCR-C17TCR-C8

Flygteknik-2010 – Norra Latin Stockholm, Oct Trim & longitudinal static stability Results from SDSA, for h=10 km and V = 240 m/s (M=0.8) Config. xWxW xCxC S C [m2]  trim [deg]  trim [deg] Static margin (%MAC) TCR-C TCR-C TCR-C TCR-C  C, static margin S C distance W-C

Flygteknik-2010 – Norra Latin Stockholm, Oct Construct Windtunnel Model Exterior shape - Export IGES PoliMi designed interior structure