Vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand LHCb Vertex Detector System: Status Report J.F.J. van den Brand Subatomic.

Slides:



Advertisements
Similar presentations
EDR-1 December 16/17, 2002 Hans de Vries - 1 Status RF foil RF/vacuum foil  Purpose  Production methods used  Deformations: static - overpressure 
Advertisements

1 Ann Van Lysebetten CO 2 cooling experience in the LHCb Vertex Locator Vertex 2007 Lake Placid 24/09/2007.
Sept. 30, 2004 NIKHEF-1 Hans de Vries Status NIKHEF Mechanics Secondary vacuum box Bellows Vacuum system CO 2 cooling: Bart Verlaat.
MICE RF Cavity Design and Fabrication Update Steve Virostek Lawrence Berkeley National Laboratory MICE Collaboration Meeting October 27, 2004.
April 15, 2002 NIKHEF-1 Hans de Vries Status RF foil Projects in progress: Rectangular bellows Wakefieldsuppressors EMI measurements RF/vacuum foil  Production.
AMS-02 tracker mechanics status of assembly and integration at UniGe Outer planes: - Tests of evaporator (cooling loop) integration - Tools to develop.
Lausanne, Generator Miniworkshop, March 2001 Massimiliano Ferro-Luzzi, CERN/EP Beam-gas background in LHCb What nuisances for LHCb from p-A background.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
Vacuum system in the main Linacs C. Garion CERN/TE/VSC CLIC09 workshop, October.
CIEMAT CONTRIBUTION TO TBL PETS (January 2009) David Carrillo on behalf of the Accelerators Team.
Status of vacuum & interconnections of the CLIC main linac modules C. Garion TE/VSC TBMWG, 9 th November 2009.
Vacuum / cryo links Mechanical design issues Jo van den Brand, Martin Doets Nikhef Cascina, January 21,
Dec. 4, 2001 CERN-1 Hans de Vries VELO Mechanics  RF/vacuum foil  Rectangular bellow  Wake field suppressors  Cabling Summary & Outlook VELO mechanical.
Status overview of the cooling 31 August 2015 Bart Verlaat, Raphael Dumps 1.
VELO workshop, Amsterdam, april ‘00M.Ferro-Luzzi Difficulties with current mechanical design recent FEA results: to obtain sufficient stiffness of center.
Jeroen van Hunen The LHCb Tracking System. May 22, 2006 Frontier Detectors for Frontier Physics, Elba, Jeroen van Huenen 2 The LHCb Experiment LHCb.
26 April 2013 Immanuel Gfall (HEPHY Vienna) Belle II SVD Overview.
INSTRUCTION DISCONNECTING THE ELLIPTICAL HEAD The National Institute for Nuclear Physics and High Energy Physics Kruislaan SJ Amsterdam PO Box.
EDR - Mech. 2; December 16/17, 2002 Hans de Vries - 1 Status of Vertex at NIKHEF VELO Mechanics  RF/vacuum foil  Rectangular bellow  RF measurements.
Martin van Beuzekom, STD6 14 th September Outline: Introduction to LHCb and VErtex LOcator (VELO) Status of VELO Beamtests Upgrades Summary LHCb.
BDS 11 Vacuum System for BDS [Completeness of RDR] Y. Suetsugu J. Noonan and P. Michelato Design principle Basic design Cost estimation.
1 Discussion for basic options — engineering video conference July 12, 2006 Outline Water pool — advantages — issues, problems, engineering options Aquarium.
November 29, 2002 NIKHEF-1 Hans de Vries Status RF foil RF/vacuum foil  Purpose  Production methods used  Deformations: static - overpressure  Electrical.
SuperKEKB Vacuum System - for the positron ring - Y. Suetsugu KEKB Vacuum Group Outline Design and production status of key components Beam pipes for arc.
Project Update: A Possible New RF FOIL for the VELO UPGRADE Ray Mountain, Sheldon Stone Syracuse University.
Cryogenic update before Fermilab meeting (and after the helium tank review) Coordination meeting 6 th May 2015 K. Brodzinski HiLumi-LHC-CC-Cryo-PPT-18_v1.
CMS FPIX Cooling System Studies Joe Howell, Fermilab for the FPIX Upgrade Mechanical Working Group CMS Upgrade Workshop April 27,
2009/1/16-18 ILD09 Seoul 1 Notes for ILD Beam Pipe (Technical Aspect) Y. Suetsugu, KEK Parasitic loss Vacuum pressure profile Some comments for beam pipe.
9 September 2004The Straw Tube Chamber1 The CDC Curtis A. Meyer Carnegie Mellon University Physics Requirements and Specifications Prototype Construction.
Mechanical Designs of The Central Detector Jinyu Fu
Workshop Chamonix XV27-January-2006 DivonneMassimiliano Ferro-Luzzi 1 State of LHCb for the Sector Test  Overview  Agreement  Status of –VELO –exit.
ILC MDI workshop January 6-8, 2004 PEP-II IR M. Sullivan 1 Interaction Region of PEP-II M. Sullivan for the ILC MDI workshop January 6-8, 2005.
Study Plan of Clearing Electrode at KEKB Y. Suetsugu, H. Fukuma (KEK), M. Pivi, W. Lanfa (SLAC) 2007/12/191 ILC DR Mini Work Shop (KEK) Dec.
1 Thermal tests planning for mock-up TM0 Thermal tests planning for CLIC prototype module type 0 May 30th,
1 VI Single-wall Beam Pipe Option: status and plans M.Olcese TMB June 6th 2002.
LHCb Week, CERN, may ‘00M. Ferro-Luzzi LHCb Vertex Detector System: An Update Review of TP design mechanics, wake field suppression, vacuum system, cooling.
UK Neutrino Factory Meeting Front End Test Stand (F.E.T.S.) Engineering Status by P. Savage 22nd April 2009.
Vessel dimensions GTK assembly carrier Electrical connections Cooling pipes integration Vessel alignment with the beam Next steps Conclusion 3/10/20102.
ECS workshop, CERN, may ‘00M. Ferro-Luzzi LHCb Vertex Detector System Reminder of current VELO design Controls: Motion mechanics Vacuum system Cooling.
Vrije Universiteit amsterdam Milan, September 25, 2000 VELO System J.F.J. van den Brand LHCb Vertex Detector System: Status Report J.F.J. van den Brand.
1 Vacuum chambers for LHC LSS TS Workshop 2004 Pedro Costa Pinto TS department, MME group Surface Characterization & Coatings Section.
September 17-21, 2007Workshop on ILC Interaction Region Engineering Design, SLAC IR Vacuum Systems first thoughts Oleg Malyshev ASTeC, STFC Daresbury Laboratory.
Vacuum Devices for accelerator studies Bernard HENRIST CERN TE dept. – Technology Department VSC group – Vacuum Surfaces and Coatings OLAV III Oak Ridge.
SKEKB Mini Work SKEKB Vacuum System – Arc Section – Contents Y.Suetsugu KEKB Vacuum Group 1.Beam Chambers 2.Pumps: Pump, Pressure,
Vacuum Studies of LHCb Vertex Locator Sensors Gwenaëlle Lefeuvre, Ray Mountain, Marina Artuso Department of Physics, Syracuse University Abstract : The.
7-Sep-2011 CLIC RF Structure Development Meeting «BE/RF» TD26 WITH COMPACT COUPLER FOR CLEX (TD26 CC SiC) ENGINEERING DESIGN this structure will be used.
THIN FILMS FOR CLIC ELEMENTS Outline Motivation The role of MME-CCS DB and MB transfer lines Main beam Main beam quadrupoles Other issues conclusions CLIC.
The integration of 420 m detectors into the LHC
E-cloud Remedies and PS2 vacuum design J.M. Jimenez AT Department – Vacuum Group CARE-HHH-APD BEAM’07 Thursday 04 October Session 2: PS2 E-cloud.
Vessel dimensions GTK assembly carrier Electrical connections Cooling pipes integration Vessel alignment with the beam Next steps Conclusion 3/23/20102electro-mechanical.
LHC Days 2001 Villars-sur-Ollon, Massimiliano Ferro-Luzzi, CERN/EP Overview of LHCb Current VELO design:  Mechanics  Cooling system for Si.
Simulation of heat load at JHF decay pipe and beam dump KEK Yoshinari Hayato.
Technical Design for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
LHC Beampipes Ray Veness / AT-VAC FP XII 08Beam Vacuum- R.Veness.
19 December 2006Eddy Jans Annual Scientific Meeting0 The advent of the VELO introduction sensors mechanics vacuum motion cooling PU-modules installation.
Two-beam module layout
LCWS11 WG4 Fully featured accelerating structure engineering design
VELO Thermal Control System
Simulated vertex precision
IFR detector mechanics
LHCb and its VErtex LOcator integration into the LHC
LHCb VErtex LOcator For precision measurements of CP-violation at CERN (GENEVE) HALF of DETECTOR Si strip detector Read-out electronics Secondary vacuum.
LHCb VErtex LOcator ENGINEERING DEPARTMENT
LHCb VErtex LOcator For precision measurements of CP-violation at CERN (GENEVE) HALF of DETECTOR Si strip detector Read-out electronics Secondary vacuum.
NEG-coated gun: Black R30 arc at 227kV, white R30 arc at 164 after refurbishing and second bake Carlos Wednesday, August 10, 2018.
VELO-meeting January 25, 2007 Sub-projects: SX & SX
SNS PPU Cryomodule Instrumentation
The LHCb VErtex LOcator
Presentation transcript:

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand LHCb Vertex Detector System: Status Report J.F.J. van den Brand Subatomic Physics Group, VUA - NIKHEF Milan design Optimized design mechanics vacuum system cooling system Summary

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Mechanics: “TP” design Side flange Bending hinges Detector support and cooling Bellows (22000 signal wires) Support frame Si detector moves by 30 mm only two positions: open or closed !! See LHCb /VELO top half = bottom half

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Milan design VELO Design: Single flange XY table CO 2 cooling WF suppressors Second. vacuum Studied assembly alignment To do further design FEA

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Detector and support frame both halves on same side VD easier to mount and position in the tank install complete VD at once the two halves are no longer interchangeable

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Vacuum vessel Employ top flange Easier installation Shorter cables Length 2000 mm Width 1200 mm

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Top flange Lift 600 Length 1500 mm Distance from ceiling 1900 mm Install using wires Baking to 60 o C? Regenerate NEGs after every access to Si detectors

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Optimized System Total length: 1750 Two detector boxes Baking up to 150 o C Decouple access to Si detectors

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Support system bellows chain/belt cooling/bake out gearbox 1:40 ball spindle 16x2  5 mm linear bearing 2x motor Microswitches at out position LVDTs Steel frame Alignment: –2 planes –3 points each –define IP

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Support system Alignment pins for reproducible coupling reproducible positioning

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Vessel Installation Move bellows to in-position Install vessel from top Align vessel Mount vessel to frame Mount bellows Pump-outs visible

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Install 2nd-Vacuum Vessel Remove upstream flange Need 2 m access Rectangular bellows –60 mm stroke –normal 35 mm –lateral 6 mm Fabrication –Palatine, Bird –Calorstat, MB –cost

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Vacuum vessel / Positioning system Moving parts not in vacuum Thin vacuum container Special bellows construction Secundary vacuum Primary vacuum

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand After installation Detector system separated from vacuum system functionality Mount positioning system to detector housing Install –pump-out, valves –turbos, damping

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Connect inner system to motion drives Mount M8 through side flanges

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Detector Installation Install detector halfs from sides Decouple detectors from box Tooling needed

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand VELO Assembly Detectors mounted

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Wakefield suppressors Mount screens after mounting 2nd vacuum container Mount through top flanges –seal with view ports? Upstream: mount with large flange off WF screens IP

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Wakefield suppressor: downstream Up/downstream suppressors are identical Material: CuBe Length: 179 mm Thickness: 100  m 16 segments Mounting to box non-trivial

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Wakefield suppressors Segments deform differently during movement Coating needed on suppressors Press-fit to beam pipe structure Anneal CuBe, deform, harden at 400 o C

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Detector Mounting Install Modules 3D alignment Mount References

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Thin Vacuum foil Beryllium expensive: k$ 500 per container Aluminum –welding 250  m Al is possible –press-shaping being developed FEA ongoing

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Thin Vacuum foil Labour intensive: press, anneal, etc. welding 250  m Al is possible Extensive prototyping program Chiel Bron CP?!

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Thin Vacuum foil Increase radius: 10  20 mm to avoid folding Crystal structure is affected Employ Al with magnesium alloy Deform at higher temperature: o C

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Foil design ongoing (continued)

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Foil design ongoing

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Control of Vacuum System Group active with experience at former NIKHEF accelerator Propose meeting in Q1 2001

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Vacuum Tests Self-regulating valve behaves as advertized Various gas flows have been characterized

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Vacuum constraints LHC: beam life time: static density of mbar  2 m (H 2 300K)  0.01 % of LHC limit for integrated density ( cm  molecules/cm 3 ) beam stability: dynamic effects must be taken into account LHCb: mbar  1.2 m (H 2 300K)  1.5 % of LHCb nominal luminosity Difficult to achieve with silicon detectors, electronics and signal wires directly in LHC vacuum !  differential pumping. (rough!) See LHCb /VELO

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Static pressure in VD Consider outgassing by: assuming outgassing rates of: (mbar l s -1 cm -2 )  11 m 2 Kapton (signal wires, pumped 40 hours) H 2 O  2.3 m 2 Al housing (per half) H 2  1.5 m 2 bellows (per half) H 2  8 m 2 SS vessel H 2 Pumps in detector volume:  140 l/s (per half) H 2 O Pumps in tank:  4000 l/s H 2 Bypass tube: 200 mm  4 mm pumped in the middle. Calculate using a static flow model. Result: mbar in detector volume mbar in VD tank mbar l s -1 from det. vol. to VD tank

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand S ummary table: (Data are approximate. Q LHCb_total = estimate for the full vertex detector, i.e. both halves.) Item Outgassing rate of itemQ LHCb_total [mbar l s -1 ] Kapton foil, after 40 hrs pumping 1 E-7 mbar l s -1 cm -2 n/a sample Kapton flat cable QPI 3 E-5 mbar l s E-4 male/female pair of PEEK D-type 25-pin connectors6 E-6 mbar l s -1 / pair 50 E-4 male/female pair of stand. D-type 25-pin connectors1 E-5 mbar l s -1 / pair 100 E-4 Liverpool carbon-fiber Si support 1 E-8 mbar l s -1 cm -2 ~ 1 E-4 Outgassing measurements Continue: measure all unknown outgassing rates of components in a detector station

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Dynamic Vacuum Beam-induced particle bombardment  desorption, emission Ions, photons, electrons energies up to keV Local pressure runaway (ion/electron-induced desorption) Local static charge increase (electron multipacting) LHC beam instability See Adriana Rossi’s presentation

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Dynamic Vacuum (continued) Perhaps a solution: use coating of surfaces by Ti advantages: low  SEY, low , local pumping Design issues: better surfaces ? (NEG ?) in-situ coating required or not ? thickness of layer needed ? what re-coating rate ? affordable cathode temperature in-situ ? wake field / RF properties ? side effects ? (peeling,...) We need ,  for: different materials surface conditions (un)baked, saturated, activated, etc. different impact energy spectra Data available only in a few months ! (Mahner et al.)

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Cooling system with mixed-phase CO 2 *

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand CO 2 Cooling Tests Cooling system -30 o C 40 W/module

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand CO 2 gas-liquid storage tank 57.3 bar at 20  C CO 2 supply line compresssor P [W] flow restrictions cooling lines gas only pressure (temperature) regulating valve heat to 20  C Mixed-phase CO 2 Cooling system See LHCb /VELO cool to 20  C supply line expansion valve

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand CO 2 Cooling Tubes Cooling tubes 1.1 (0.9) mm S.St. Welding and brazing

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand FEA ongoing

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Tests ongoing

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand RF tests at NIKHEF Simulation with MAFIA First 3 measured eigenmodes: 220 MHz 270 MHz 380 MHz Outlook: Eigenmodes Short range effects; Z/n Electric field inside secondary vacuum Picture 1 of tank removed Picture 2 of tank removed

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Wake field Suppressor Central cooling line Temperature sensors (2 per station, 4 wires per measurement

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Detector Modules Number of planes: 25 Discuss Liverpool delivers modules 40 W, 1 m cable, 50 % isolation thickness, K  T, radiative cooling 44 pins, 440 / module

vrije Universiteit amsterdam CERN, November 27, 2000 VELO System J.F.J. van den Brand Summary Design is based on secondary vacuum system –Beryllium option: costly and uncertain –needs approval for TDR Current design –allows baking up to 150 o C –decouples Si detectors from primary vacuum system –employs venting with Argon –cooling based on CO 2 in gas-liquid phase Self-regulating valves behave as advertised Wakefield excitation under study Need information on dynamic vacuum effects Propose meeting on control issues (e.g. NIKHEF)