WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.

Slides:



Advertisements
Similar presentations
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Advertisements

SCIAMACHY Calibration Review, ESTEC, 11 September 2002 Tilstra, De Graaf, Stammes First verification of SCIAMACHY’s polarisation measurements Gijs Tilstra,
SSAG Data and Algorithm Subgroup, February 2004, Brussels Summary of data product and algorithm development at KNMI Ronald van der A, Juan Acarreta,
Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
Validation of SCIAMACHY polarisation using POLDER as a reference (bonus: reflectance validation) Tiger Team Meeting 23, SRON, 23 May 2006.
Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Eyk Bösche et al. BBC2 Workshop, Oktober 2004: Simulation of skylight polarization with the DAK model and.
GOME-2 polarisation data and products L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI GSAG #42, EUMETSAT,
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
 nm)  nm) PurposeSpatial Resolution (km) Ozone, SO 2, UV8 3251Ozone8 3403Aerosols, UV, and Volcanic Ash8 3883Aerosols, Clouds, UV and Volcanic.
Analysis of SPUV aerosol data for the May 2003 BBC2 campaign Piet Stammes Wouter Knap KNMI.
Validation of SCIAMACHY using POLDER as a reference 25 April 2006.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
Validation of Solar Backscatter Radiances Using Antarctic Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA.
Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.
GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
A U R A Satellite Mission T E S
Surface UV radiation monitoring based on GOME and SCIAMACHY Jos van Geffen 1,2, Ronald van de A 1, Michiel van Weele 1, Marc Allaart 1, Henk Eskes 1 1)
DIRECT TROPOSPHERIC OZONE RETRIEVALS FROM SATELLITE ULTRAVIOLET RADIANCES Alexander D. Frolov, University of Maryland Robert D. Hudson, University of.
Just how good is a L1 spectrum? An overview of SCIAMACHY calibration quality Ralph Snel, SSAG Calibration Subgroup and SQWG SADDU meeting June 16/17, 2008.
KNMI, The Netherlands * SCIAMACHY validation workshop, Bremen, 6 Dec ‘04 Large scale validation of SCIAMACHY nadir reflectance Gijs van.
1 Global Observations of Sulfur Dioxide from GOME Xiong Liu 1, Kelly Chance 1, Neil Moore 2, Randall V. Martin 1,2, and Dylan Jones 3 1 Harvard-Smithsonian.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
Development of GEMS Cloud Data Processing Algorithm Yong-Sang Choi 1, Bo-Ram Kim 1, Heeje Cho 2, Myong-Hwan Ahn 1 (Former COMS PI), and Jhoon Kim 3 (GEMS.
Gloudemans 1, J. de Laat 1,2, C. Dijkstra 1, H. Schrijver 1, I. Aben 1, G. vd Werf 3, M. Krol 1,4 Interannual variability of CO and its relation to long-range.
GOME-2 Polarisation Study — Final Presentation L.G. Tilstra (1,2), I. Aben (1), P. Stammes (2) (1) SRON; (2) KNMI EUMETSAT, Darmstadt,
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
TEMIS user workshop, Frascati, 8-9 October 2007 Tropospheric Formaldehyde (CH 2 O) from Satellite Observations. Isabelle De Smedt 1, M. Van Roozendael.
EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA EUMETSAT METEOROLOGICAL SATELLITE CONFERENCE 15/09/2013 – 20/09/2013, VIENNA.
1 Aerosol information from the UV-visible spectrometer GOME-2 Piet Stammes, KNMI, De Bilt, The Netherlands 7 November 2012.
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Surface UV from TOMS/OMI measurements N. Krotkov 1, J. Herman 2, P.K. Bhartia 2, A. Tanskanen 3, A. Arola 4 1.Goddard Earth Sciences and Technology (GEST)
Surface Reflectivity from OMI: Effects of Snow on OMI NO 2 Gray O’Byrne 1, Randall Martin 1,2, Aaron van Donkelaar 1, Joanna Joiner 3, Edward A. Celarier.
UV Aerosol Indices from (TROP)OMI An investigation of viewing angle dependence , Marloes Penning de Vries and Thomas Wagner Max Planck Institute.
 Introduction  Surface Albedo  Albedo on different surfaces  Seasonal change in albedo  Aerosol radiative forcing  Spectrometer (measure the surface.
Page 1Validation by Satellite Intercomparison - ESRIN 9–13 December 2002 National Institute for Space Research Preliminary validation of the first SCIAMACHY.
WP 8: Impact on Satellite Retrievals University of l’Aquila (DFUA [12]): Vincenzo Rizi Ecole Polytechnique (EPFL [13]): Bertrand Calpini Observatory of.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
POLAR MULTI-SENSOR AEROSOL PROPERTIES OVER LAND Michael Grzegorski, Rosemary Munro, Gabriele Poli, Andriy Holdak and Ruediger Lang.
Investigation on the possibilities of trend detection of spectral irradiance Merle Glandorf and Gunther Seckmeyer Institute of Meteorology and Climatology.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Validation by Model Assimilation/Satellite Intercomparison - ESRIN 9–13 December 2002 Expected Validation of Envisat Ozone Data E. Hilsenrath NASA Goddard.
Satellite group MPI Mainz Investigating Global Long-term Data Sets of the Atmospheric H 2 O VCD and of Cloud Properties.
Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET) Thomas F. Eck (Code 618 NASA GSFC) and Brent N. Holben (Code.
Validation of the OMI Surface UV product OMI Science Team Meeting #11 De Bilt, June 20-23, 2006 Aapo Tanskanen.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Harmonizationof GOME, SCIAMACHY, GOME-2 ozone cross-sections Anna Serdyuchenko, John P. Burrows, Mark Weber, Wissam Chehade University of Bremen, Germany.
A Long Term Data Record of the Ozone Vertical Distribution IN43B-1150 by Richard McPeters 1, Stacey Frith 2, and Val Soika 3 1) NASA GSFC
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
ESTIMATION OF SOLAR RADIATIVE IMPACT DUE TO BIOMASS BURNING OVER THE AFRICAN CONTINENT Y. Govaerts (1), G. Myhre (2), J. M. Haywood (3), T. K. Berntsen.
Retrieval of Vertical Columns of Sulfur Dioxide from SCIAMACHY and OMI: Air Mass Factor Algorithm Development, Validation, and Error Analysis Chulkyu Lee.
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Monitoring of sulphur dioxide emissions from satellite as part of GSE PROMOTE Jos van Geffen, Michel Van Roozendael, Isabelle De Smedt, Caroline Fayt (BIRA-IASB)
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
OMI BSDF Validation Using Antarctic and Greenland Ice Glen Jaross and Jeremy Warner Science Systems and Applications, Inc. Lanham, Maryland, USA Outline.
Fourth TEMPO Science Team Meeting
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
The Successor of the TOU
Hyperspectral radiation: measurements and modelling
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Scientist, Gamer, Fighter
Preliminary SCIAMACHY Lunar observations as intercalibration source
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute (KNMI) 2 Netherlands Institute for Space Research (SRON) SCIAvisie Meeting, KNMI, De Bilt,

(2) SCIAMACHY instrument degradation relevant to WP 3 and WP 10

SCIAvisie Meeting, KNMI, De Bilt, (3) 1. AAI (=residue) as an indicator of instrument degradation: The global mean residue should be more or less constant m-factors not applied m-factors applied: some improvement, introduction of “features”

SCIAvisie Meeting, KNMI, De Bilt, (4) 2. In-flight reflectance calibration method: Global mean reflectance: isolate/remove the natural seasonal variation from the time series grey: daily global mean reflectance coloured: 12-day average black curves: Fourier series on polynomial base dotted curves: polynomial base (dotted curves) (black curves)

SCIAvisie Meeting, KNMI, De Bilt, (5) Black curves: Fourier series without the polynomial base: 3. Simulations: c: FRESCO+ cloud fraction A c : FRESCO+ cloud albedo A s : OMI-based surface albedo (LER value) Question: Are the seasonal variations really related to natural variations? Simulations based on RT calculations for cloud-free scenes including ozone absorption and Lambertian surface reflection. Including clouds in the simulations:   

SCIAvisie Meeting, KNMI, De Bilt, (6) 4. Instrument degradation: correction factors d(340) and d(380) 340 nm 380 nm

SCIAvisie Meeting, KNMI, De Bilt, (7) 5. Verification: analyse the global mean residue/AAI Correction for instrument degradation works well. Data affected by decontamination events can be corrected. Seasonal variation similar to that found for GOME-1/2. Grey bars: data were affected by decontamination events Secondary correction in “grey areas” possible

SCIAvisie Meeting, KNMI, De Bilt, (8)  Keep improving the scientific AAI product (SC-AAI)  Include spectral dependence of surface albedo into algorithm  Continue the improvement and validation of the L2-AAI  Maintain SC-AAI data archive at the TEMIS website  Further study the scan-angle dependent degradation for support of WP 10 Plans for WP 3: Plans for WP 10:  Verify improvement in calibration by the new “SRON” m-factors using the various tools we developed  Monitor instrument degradation and analyse the quality of the applied degradation correction (“m-factors”) in the UV using the Absorbing Aerosol Index (AAI) and using in-flight monitoring of level-1 data  Monitor and validate polarisation product using special geometries  Analyse the reflectance over specific stable Earth targets

SCIAvisie Meeting, KNMI, De Bilt, (9) Extra slides (R)

SCIAvisie Meeting, KNMI, De Bilt, (10) R1: The “Global Dust Belt”

SCIAvisie Meeting, KNMI, De Bilt, (11) R2: Introduction of the Absorbing Aerosol Index (AAI) and the residue A.Definition of the residue: where the surface albedo A for the simulations is such that: (A is assumed to be wavelength independent: A 340 = A 380 ) no clouds, no aerosols: r = 0 clouds, no absorbing aerosols: r < 0 absorbing aerosols: r > 0 B.Definition of the AAI: AAI = residue > 0(and the AAI is not defined where residue < 0) – The AAI represents the scene colour in the UV –

SCIAvisie Meeting, KNMI, De Bilt, (12) R3: Typical global aerosol distribution: The “Global Dust Belt”: Desert Dust Aerosols (DDA) (dust storms, all year) AAI from other UV satellite instruments: TOMS, GOME-1, GOME-2. Combined with SCIAMACHY there are more than three decades (1978–2010) of AAI data available for studies of trends in desert dust and biomass burning aerosol. Biomass Burning Aerosols (BBA) (dry season, anthropogenic)

SCIAvisie Meeting, KNMI, De Bilt, (13) R4: measurements versus simulations

SCIAvisie Meeting, KNMI, De Bilt, (14) WP 10: level-1 validation –comparison with radiative transfer model “DAK” (in the UV) –comparison with other satellite instruments (GOME-1, MERIS, POLDER-2, …) –qualitative analysis of the spectra (spectral properties) Validation techniques for the reflectance: calibration offset spectral features