Name (Lab)Presentation title (Place, date) 1 IN2P3 Les deux infinis Optical cavity Revue ThomX mécanique (25/01/2011) Optical cavity Yann Peinaud & Mickael.

Slides:



Advertisements
Similar presentations
Industrial Electrical Engineering and Automation Actuators Linear movement and vibration.
Advertisements

LINAC3 INSTRUMENTATION STATUS F.Roncarolo – 18 Feb 2015 F.Roncarolo 18 Feb
Overview of Alignment System. FSI solution: implementation Retrolefrector ball 1” FSI head (TIP-TILT adjustmnent needed) To provide minimum redundancy.
Myriam Newman April 13, 2007 Laser-Wire 1 Myriam Newman LC-ABD Meeting University of Oxford Thursday, April 13 Lens Performance Review Laser-Wire Team.
A_RD_01 Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay French Labs. :
Compton Experiment at the ATF Update since TILC09 Positron Workshop Durham 28-October-2009 Junji Urakawa instead of T.Takahashi KEK for collaborators.
Applications of a high finesse Fabry Perot Cavity for the ILC ► Introduction ► Status of the cavity R&D – at ATF – at LAL/Orsay Japanese Labs. : KEK, ATF.
1 Laser Beam Coherence Purpose: To determine the frequency separation between the axial modes of a He-Ne Laser All sources of light, including lasers,
Development of a mover having one nanometer precision and 4mm moving range Y. Morita, S. Yamashita ICEPP, University of Tokyo Y. Higashi, M. Masuzawa,
Target Specifications & History (to avoid reinventing a broken wheel!) 2 nd December 2009 Chris Booth The University of Sheffield.
IPBPM piezo-mover system and plans for in situ monitoring of calibration and stability Current status and plan for ATF2 Philip Bambade Laboratoire de l’Accélérateur.
-brief report of October runs and some inputs for the Nov/Dec planning – Nobuhiro Terunuma, KEK, ATF ATF session on LCWS13, Tokyo Univ., Nov. 13, 2013.
Overview of enhancement cavity work at LAL/Orsay  INTRO:  Optical cavity developments at LAL  Results on optical cavity in picosecond regime  Polarised.
Installation of a Four-mirror Fabry-Perot cavity at ATF 1.Our setup/goal 2.Why 4 mirrors ? 3.The ATF 4-mirror cavity 4.The optical scheme 5.The laser/cavity.
SAM PDR1 SAM LGS Mechanical Design A. Montane, A. Tokovinin, H. Ochoa SAM LGS Preliminary Design Review September 2007, La Serena.
SSR1 Tuner studies (work in progress) 1 L. Ristori – 29 Nov 2011 With slides from I. Gonin, M. Hassan and D. Passarelli.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
30/05-03/06/2007 LCWS2007 and ILC2007, DESY Hamburg Germany Vacuum System Specifications What needs to be specified in Vacuum Specification for ICL Damping.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Status of vacuum & interconnections of the CLIC main linac modules C. Garion TE/VSC TBMWG, 9 th November 2009.
MICE RFCC Module Update Allan DeMello Lawrence Berkeley National Laboratory MAP Winter Collaboration Meeting at JLab, Virginia February 28, 2011.
1 Fabry-Perot cavity & pulsed laser J. Bonis, V. Brisson, J.N. Cayla, R. Chiche, R. Cizeron, J. Colin, Y. Fedala, G. Guilhem, M. Jacquet-Lemire, D. Jehanno,
IN2P3 Les deux infinis G. Balik, B. Caron, L. Brunetti (LAViSta Team) LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & SYMME-POLYTECH Annecy-Chambéry,
Design of Stable Power-Recycling Cavities University of Florida 10/05/2005 Volker Quetschke, Guido Mueller.
LPOL-cavity Mechanics Test cavity (pb of the gain)
Technical Challenges and Concerns S. Sharma and R. Alforque, R. Beuman, C. Foerster, E. Haas, E. Hu, P. Montanez, P. Mortazavi, S. Pjerov, J. Skaritka,
New IP chamber for ATF2 goal 2 Philip Bambade Laboratoire de l’Accélérateur Linéaire Université Paris 11, Orsay, France ATF2 Technical Review KEK, 3-4.
HPS Collaboration Meeting JLAB, May Tracker Design Status M.Oriunno, SLAC.
Nonplanar Cavity Construction and Locking Technique for High Finesse Cavity Soskov V., Chiche R., Cizeron R., Jehanno D., Zomer F. Laboratoire de l’Accélérateur.
D. Missiaen Summaries of the discussion. 2 H. Mainaud Durand The iris diaphragm laser alignment system for Spring 8 storage ring magnets Align multipoes.
ATF1/2 laser-wires Stewart T. Boogert on behalf of UK Extraction line laserwire collaboration A. Aryshev, G. Blair, S. Boogert, A. Bosco, L. Corner, L.
LALEucard WP IN2P3 Les deux infinis IN2P3 Les deux infinis W. Kaabi, Y. Peinaud, A. Thiebault, E. Herry, A. Variola. M. Lacroix, F. Letellier-Cohen,
Engineering Division 1 M321/M331 Mirror Switchyard Design Review Tom Miller
41 st IUVSTA Workshop, Brdo pri Kranju, 21/06 – 24/06/2004 L. Schulz SLS Vacuum System Lothar Schulz Theo Bieri Nazareno Gaiffi Martin Steinacher.
MICE RFCC Module Update Allan DeMello Lawrence Berkeley National Laboratory MICE CM29 at RAL, UK February 17, 2011.
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
Short range alignment strategy in CLEX and first results CLIC Workshop January 2015 on behalf of : Hélène Mainaud-Durand, Mateusz Sosin Mathieu.
11/4/2005OLAV 1 Workshop CERNW. Maan Fast Vacuum Valves at CERN -Introduction to fast valves -History of fast valves in use/used at CERN -LEP fast shutters.
Laboratoire de Chimie-Physique CNRS – Université Paris-Sud UMR ORSAY Cs 2 Te photocathodes at ELYSE.
LASER FRAME: Straightness monitor (Tentative results of resolution test) Third Mini-Workshop on Nano Project at ATF May 30-31,2005 KEK Nano BPM Group Y.Higashi,
Paolo La Penna ILIAS N5-WP1 meeting Commissioning Progress Hannover, July 2004 VIRGO commissioning progress report.
Current Status of LASER FRAME for KEK-Nano BPM (Tentative results of resolution test) Second Mini-Workshop on Nano Project at ATF December 11-12, 2004.
Compton Experiment at ATF DR 2009 Summary and Plan ATF2 Project Meeting 15-Dec-2009 T. Omori (KEK) for collaborators.
MICE RFCC Module Update Steve Virostek Allan DeMello Lawrence Berkeley National Laboratory MICE CM27 at RAL, UK July 8, 2010.
The VIRGO detection system
25/05/2007POSIPOL FOUR MIRRORS Fabry Perot resonator at LAL-Orsay Y. Fedala With help of F. Zomer, R.Cizeron.
LHC Beampipes Ray Veness / AT-VAC FP XII 08Beam Vacuum- R.Veness.
Optical Cavity construction at LAL  2000 : polarimeter at HERA 2-mirror cavity cw ND:YAG laser, F=30000 (  ~ )  2005 : Ti:sapph pulsed laser.
Compton Gamma-ray Generation Experiment by Using an Optical Cavity in ATF POSIPOL 2007 Workshop at LAL Hirotaka Shimizu Hiroshima University.
SOLEIL & LAL ThomX Diagnostics (LAL, 29/03/2012) 1 IN2P3 Les deux infinis Marie LABAT, Nicolas HUBERT, Lodovico CASSINARI (Synchrotron SOLEIL) Nicolas.
SPL RF coupler: integration aspects
EUROTeV Diagnostics WP5
H1 Squeezing Experiment: the path to an Advanced Squeezer
Dielectric Wakefield R&D programme at Daresbury Lab.
SPARCLAB: PW-class Ti:Sa laser+SPARC
The PHIN Photoinjector for CTF3
Goals Technical solution  Fabry-Perot optical resonator
Proposal of Piezo Goniometer for LHC Channeling experiment
Progress toward squeeze injection in Enhanced LIGO
Challenges of vacuum chambers with adjustable gap for SC undulators
EBTF Design Review Technical Meeting Group
CEPC Vacuum System Dong Haiyi 2017/11/5.
Diagnostics for ThomX Nicolas HUBERT, Marie LABAT, Moussa EL-AJJOURI, D. PEDEAU, Synchrotron SOLEIL Iryna CHAIKOVSKA, N. DELERUE, LAL.
Design of Stable Power-Recycling Cavities
Interferometric measurements on mirrors
Application of a Streak camera at PITZ
Compton effect and ThomX What possible future?
Status of LIGO Installation and Commissioning
Advanced Research Electron Accelerator Laboratory
Presentation transcript:

Name (Lab)Presentation title (Place, date) 1 IN2P3 Les deux infinis Optical cavity Revue ThomX mécanique (25/01/2011) Optical cavity Yann Peinaud & Mickael Lacroix (LAL) &

Name (Lab)Presentation title (Place, date) 2 IN2P3 Les deux infinis Optical cavity  Synoptic & Constraints  Solutions  Motorized table, bumpers / Optical table  Vacuum chamber  Mirror adjustment system  Actuator capsule  Optical chamber  Dîpole chamber  X-ray output  Vacuum load compensation system  Positioning strategy  Not studied yet Summary

Name (Lab)Presentation title (Place, date) 3 IN2P3 Les deux infinis Optical cavity Synoptic and constraints Flat mirror 1 ( θx, θy, z ) Flat mirror 2 ( θx, θy, z ) Spherical mirror 1 ( θx, θy, z ) Spherical mirror 2 ( θx, θy, z ) x y z Waist e- beam  Synoptic  Constraints  Micro positioning of the Waist (+/-10µm on X and Y)  Stability of the positioning  “No vibration”  No misalignment (No load variation)  Vacuum  Low out-gasing materials  Baking at 150°C  Micro positioning of the mirrors ( θx, θy, z )  Lowest interaction angle  40mrad of Compton X-ray output  Lowest e- beam perturbation 2100 mm

Name (Lab)Presentation title (Place, date) 4 IN2P3 Les deux infinis Optical cavity Motorized table, bumpers and optical table Bumpers Constraints:  Micro positioning of the Waist (+/-10µm on X and Y)  Stability of the positioning  “No vibration” x y z X motion Y motion 3 feets with X&Y micro motions + bumpers between the 2 tables (used by Mightylaser at KEK)

Name (Lab)Presentation title (Place, date) 5 IN2P3 Les deux infinis Optical cavity Vacuum chamber Constraints:  Vacuum  Low out-gasing materials  Baking at 150°C Ring chambers Ring dipoles Optical chambers

Name (Lab)Presentation title (Place, date) 6 IN2P3 Les deux infinis Optical cavity ThomXMightyLaser (R.Cizeron) Z motion balls (2 on « v » tracks and 1 on flat track) Vacuum chamber  Mirror adjustment system ParametersMightyLaserThomX Max length between mirors (mm) Minimum incremental motion (µm)0,30,1 Minimum incremental motion used (µm)10,1 Arm length (mm)11060 Laser spot precision on the furthest miror (µm)1,363,5 Laser spot precision used on the furthest miror (µm)4,553,5 θx, θy motion with a cardan solution (flexure hinges) Vacuum prepared actuators Constraints:  Vacuum  Low out-gasing materials  Baking at 150°C  Micro positioning of the mirrors ( θx, θy, z )  40mrad of Compton X-ray output

Name (Lab)Presentation title (Place, date) 7 IN2P3 Les deux infinis Optical cavity Vacuum chamber  Actuator capsule Micro-actuator CF16 flanges Sub-C ceramic plug Spring Baking tests are planned Constraints:  Vacuum  Low out-gasing materials  Baking at 150°C  Micro positioning of the mirrors ( θx, θy, z )

Name (Lab)Presentation title (Place, date) 8 IN2P3 Les deux infinis Optical cavity Vacuum chamber  Piezo Sub-C ceramic plug Not possible Constraints:  Vacuum  Low out-gasing materials  Baking at 150°C  Micro positioning of the mirrors ( θx, θy, z ) High out gasing material Is it really needed in ThomX? Is the electron repetition frequency adjusted on the length of the optical cavity? If it’s the case what will be the range?

Name (Lab)Presentation title (Place, date) 9 IN2P3 Les deux infinis Optical cavity Vacuum chamber  Optical chamber Thick base (40mm) to minimize deformations due to the vacuum Thick socket on 3 feets (with precise positioning) Constraints:  Stability of the positioning  No misalignment (No load variation)  Vacuum  Low out-gasing materials  Baking at 150°C  Micro positioning of the mirrors ( θx, θy, z )

Name (Lab)Presentation title (Place, date) 10 IN2P3 Les deux infinis Optical cavity Vacuum chamber  Dipole chamber e- Pumping port Slits for laser and X-ray : - R3 x 27mm - R4.5 x 45mm BPM Constraints:  Vacuum  Low out-gasing materials  Baking at 150°C  Lowest interaction angle  40mrad of Compton X-ray output  Lowest e- beam perturbation 40 mrad X-ray

Name (Lab)Presentation title (Place, date) 11 IN2P3 Les deux infinis Optical cavity Vacuum chamber  X-ray output Cavity diagnostic (CfF40 window) Laser injection (CF 40 window) 40 mrad X-ray (CF63 beryllium window) Tests are planned to place the injection on the opposite side of the X-ray Constraints:  Vacuum  Low out-gasing materials  Baking at 150°C  Lowest interaction angle  40mrad of Compton X-ray output

Name (Lab)Presentation title (Place, date) 12 IN2P3 Les deux infinis Optical cavity compensation system Bellow for dilatation BPM support (still under study) pad Translation of 2 mm due to baking at 150°C Vacuum load compensation system Constraints:  Stability of the positioning  No misalignment (No load variation)  Vacuum  Baking at 150°C  Micro positioning of the mirrors ( θx, θy, z ) Bellows for compensation

Name (Lab)Presentation title (Place, date) 13 IN2P3 Les deux infinis Optical cavity Positioning fingers Positioning strategy

Name (Lab)Presentation title (Place, date) 14 IN2P3 Les deux infinis Optical cavity Not studied yet  The full integration between cavity and ring  Accoustic isolation & thermalisation (Mightylaser baseline)  Cleanness conservation (Mightylaser baseline)

Name (Lab)Presentation title (Place, date) 15 IN2P3 Les deux infinis Optical cavity Back slides

Name (Lab)Presentation title (Place, date) 16 IN2P3 Les deux infinis Optical cavityCavité optique Intégration sur l’anneau  Propriétés :  Angle d’intéraction de 2°  Bon accès aux miroirs  Ne nécessite pas de place dans l’anneau

Name (Lab)Presentation title (Place, date) 17 IN2P3 Les deux infinis Optical cavity Synoptique de la cavité optique 4 miroirs  Alignement  θx, θy pour chacun des miroirs  Focalisation (taille du waist)  Z sphérique 1 et 2  Longueur de cavité (fréquence de résonnance)  Z plan 1 et 2 Miroir plan 1 ( θx, θy, z ) Miroir plan 2 ( θx, θy, z ) Miroir sphérique 1 ( θx, θy, z ) Miroir sphérique 2 ( θx, θy, z ) x y z Waist e- beam  Synoptic  Constraints  Waist micro transversal positioning (+/-10µm)  Micro positioning of the mirrors  θx, θy on each mirrors  Z on spherical mir  Stability of the positioning  “No vibration”  Mirrors alignment under air  UHV  Materials  Atmosphere pressure  baking at 150°C

Name (Lab)Presentation title (Place, date) 18 IN2P3 Les deux infinis Optical cavity Dipôle BPM Vanne Pompe ionique Chambre miroirs Table optique Chambre dîpole x y z Table motorisée en X et Y Soufflet : - Isolation - Mvt transverse (table X,Y) - Mvt longitudinal (étuvage) Intégration sur l’anneau

Name (Lab)Presentation title (Place, date) 19 IN2P3 Les deux infinis Optical cavity Not studied yet  The full integration between cavity and ring  Accoustic isolation & thermalisation (Mightylaser baseline)  Cleanness conservation (Mightylaser baseline)