Parallel Ionization Multiplier (PIM) : a multi-stage device using micromeshes for tracking particles MPGD’s Workshop at NIKHEF April 16th2008 April 16th.

Slides:



Advertisements
Similar presentations
Cosmic Ray Test of GEM- MPI/TPC in Magnetic Field Hiroshima University Kuroiwa CDC Group Mar
Advertisements

Developments of micromegas detector at CERN/Saclay
Status of test beam data analysis … with emphasis on resistive coating studies Progress and questions 1Meeting at CEA Saclay, 25 Jan 2010Jörg Wotschack,
1 MUON TRACKER FOR CBM experiment Murthy S. Ganti, VEC Centre Detector Choice.
Recent R&D workon Micromegas detector Recent R&D work on Micromegas detector Liang Guan University of Science and Technology of China NanChang.
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
Amsterdam, April 2,2003P. Colas - Micromegas TPC1 Micromegas TPC: New Results and Prospects New tests in magnetic fieldNew tests in magnetic field FeedbackFeedback.
Prague, November th, 2002 Vincent Lepeltier Micromegas TPC R&D 1 Micromegas TPC R&D (and wire chamber) First measurements with a 2T magnetic fieldFirst.
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
Micromegas detectors for the CLAS12 central tracker Brahim Moreno (for the Saclay group) CLAS12 technical workshop 03/17/ 2010 Jefferson lab Update on.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Micromegas detectors for the CLAS12 central tracker Brahim Moreno (for the Saclay group) CLAS12 central detector meeting : 2 december 2009 Cea Saclay CERN.
experimental platform
Micromegas for a DHCAL LAPP, Annecy Catherine Adloff Jan Blaha Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espagilière.
-Stephan AUNE- RD51 Bari 2010 CEA DSM Irfu 08/10/20101 Saclay MPGD workshop.
C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
IHEP, Bejing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
GainEnergy resolution DIRECTION DES SCIENCES DE LA MATIERE LABORATOIRE DE RECHERCHE SUR LES LOIS FONDAMENTALES DE L’UNIVERS CENTRE DE SACLAY Contact :
1 The GEM Readout Alternative for XENON Uwe Oberlack Rice University PMT Readout conversion to UV light and proportional multiplication conversion to charge.
A real x-y Microbulk Micromegas with Segmented mesh Theo Geralis, NCSR Demokritos TIPP 2014, 2 June T. Geralis RD51 Common Fund Project 2/6/2014.
Orsay, January 12, 2005P. Colas - Resistive anode Micromegas1 Dan Burke 1, P. Colas 2, M. Dixit 1, I. Giomataris 2, V. Lepeltier 3, A. Rankin 1, K. Sachs.
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
Discussion: développement du système de lecture des photomultiplicateurs pour le prototype de détecteur Argon liquide de LBNO 21/11/2013 Réunion: APC,
5 th RD51 meeting (WG1) 25 May 2009 Atsuhiko Ochi ( Kobe University )
15th RD51 Collaboration Meeting 18 – 20 March 2015 CERN On the way to sub-100ps timing with Micromegas T. Papaevangelou IRFU / CEA Saclay.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
PNPI R&D on based detector for MUCH central part (supported by INTAS ) E. Chernyshova, V.Evseev, V. Ivanov, A. Khanzadeev, B. Komkov, L.
Summary of MM meeting at CEA Saclay, 25/26 Jan 2010 Some selected topics.
IHEP, Beijing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
Plans for MPGD Radiation hardness tests for full detectors and components Matteo Alfonsi,Gabriele Croci, Elena Rocco, Serge Duarte Pinto, Leszek Ropelewski.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
Itzhak Tserruya, BNL, May13, HBD R&D Update: Demonstration of Hadron Blindness A. Kozlov, I. Ravinovich, L. Shekhtman and I. Tserruya Weizmann Institute,
S. AUNE 15/09/08 Micromegas Bulk for CLAS12 tracker.
Study of TGEMs and RETGEMs for the possible ALICE upgrade By Himank Anand and Isha Shukla (CERN summer students) Supervisor :Vladimir Peskov.
Digital Calorimetry using GEM technology Andy White for UTA group (A. Brandt, K. De, S. Habib, V. Kaushik, J. Li, M. Sosebee, Jae Yu) U.C. Santa Cruz 6/28/2002.
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,
MUCH - related activity at PNPI A.Khanzadeev, for PNPI team ● R&D on muon chamber for MUCH central part ● Test of the materials for chamber modules ● Preparations.
UTA Digital hadron Calorimetry using the GEM concept J.Li, A.White, J.Yu 5/30/02.
EUDET Meeting, Munich – October 18, Ongoing activities at Saclay David Attié D. Burke; P. Colas; E. Delagnes; A. Giganon; Y. Giomataris;
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
Construction and Characterization of a GEM G.Bencivenni, LNF-INFN The lesson is divided in two main parts: 1 - construction of a GEM detector (Marco Pistilli)
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
NoV. 11, 2009 WP meeting 94 1 D. Attié, P. Colas, E. Ferrer-Ribas, A. Giganon, I. Giomataris, F. Jeanneau, P. Shune, M. Titov, W. Wang, S. Wu RD51 Collaboration.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
R&D Collaboration, CERN – September 10, Micromegas Performance and Ageing studies David Attié MPGD. Towards an R&D Collaboration,
Systematic studies for microbulk detectors E. Ferrer Ribas, A. Giganon, Y. Giomataris, FJ Iguaz, T. Papaevangelou (Saclay) A. Gris, R. de Oliveira (CERN)
Energy resolution results for Microbulk MICROMEGAS at high energy and pressure. Alfredo Tomás Alquézar Universidad de Zaragoza on behalf of the collaboration.
TPC R3 B R3B – TPC Philippe Legou Krakow, February nd
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
First results from tests of gaseous detectors assembled from resistive meshes P. Martinengo 1, E. Nappi 2, R. Oliveira 1, V. Peskov 1, F. Pietropaola 3,
The principle of operation of a micromegas chamber
Micromegas TPC and wire TPC First measurements in a magnetic field
some thoughts on charging-up effects
High-Resolution Micromegas Telescope for Pion- and Muon-Tracking
Updates on the Micromegas + GEM prototype
Digital Calorimetry using GEM technology Andy White for UTA group
Numerical simulations on single mask conical GEMs
Potential Ion Gate using GEM: experiment and simulation
3g Medical Imaging R&D with liquid xenon Compton telescope
TPC Paul Colas Technical meeting, Lyon.
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
réponse d’un détecteur Micromegas
A DLC μRWELL with 2-D Readout
Presentation transcript:

Parallel Ionization Multiplier (PIM) : a multi-stage device using micromeshes for tracking particles MPGD’s Workshop at NIKHEF April 16th2008 April 16th 2008 Dominique THERS, Eric MORTEAU (SUBATECH, Nantes, France) Vincent LEPELTIER † (LAL, Orsay, France) J. BEUCHER I3HP-JRA4

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 2 Outline Part 1 –PIM principle –MIP’s tracking performance Part 2 –Ion feedback suppression Conclusions

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 3 Drift electrode Micromesh 3 Micromesh 2 Micromesh 1 PIM « Parallel Ionization Multiplier » 10 cm PIM is a two amplification stages gaseous device based on micromeshes. Kapton spacer foil etched by YAG laser Clean room 50 µm 3 mm Framed mesh with 10x10 cm² active area Drift

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 4 1- Large choice of meshes:  Electroformed Nickel mesh  Chemically etched Copper mesh with pillars from Rui de Oliveira ’s lab (CERN) Modular prototype (e = 5µm, h pillars = 25 ou 50 µm) 1 mm - 60 µm Ø holes =30µm 2- Large choice of gap thicknesses : 25, or 50 µm  pillars of CERN meshes 50, 75,125 et 220 µm  Kapton foil 3- M odular mechanical structure (S. Lupone) : Holes Bar Pitch Thickness (µm) Hold-down frame Spacer frame (PVC) Mesh frame (FR4) Kapton spacer foil (or pillars)

5 MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 55 Fe 5,9 keV Systematic studies

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 6 Electron transmission (1/2) Electronic transparency depends on mesh geometry. Slight dependence has been observed with different gaseous mixture (minor effect) But full collection efficiency could be reach easily by appropriate field ratio e-e-e-e- Amplification gap Drift or transfer stages Electronic transparency (%) Electronic transparency : Standard electroformed mesh 500 LPI (125 µm) CERN mesh (50 µm) CERN mesh 500 LPI

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher LPI 500 LPI 1000 LPI 670 LPI E T /E A2 Extraction efficiency C ext (PIM µm) E T /E A µm µm µm (670 LPI) Extraction efficiency C ext Electron transmission (2/2) e-e-e-e- Transfer stage Pre-amplification gap A good choice of mesh geometry, gap thickness and gaseous mixture allows to achieve high extraction efficiency C ext ~ 25 % at operating conditions with 220 µm gap thickness and 670 LPI mesh Extraction efficiency : ETET E A2

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 8 Total gain PIM µm (CERN, 670LPI, 500LPI) A1 = 50 µm A2 = 125 µm MM 50 µm MM 125 µm 3 mm, E T ~1 kV/cm 3 mm, E c =1 kV/cm anode Maximum gain : last point before spark induced by 5.9 keV Xrays PIM : Very high total gain could be achieved (few 10 5 with Ne+10%CO 2 ) with low electric fields Energy resolution ~20% (FWHM) Total gain CERN mesh 670 LPI 500 LPI

9 MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher PIM performances with hadrons

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 10 Discharge probability measurement setup Beam Plastic scintillators + Photomultiplier for beam profile monitoring and alignment Prototypes Beam counter  10 or 150 GeV/c High hadron flux p/  + : 10 GeV/c, few 10 5 /spill (T9) CERN 150 GeV/c, /spill (H6) CERN

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 11 Discharge probability Discharge probability lower than per incident hadron at G~5000 with PIM 125 µm 50 µm A1 A2 3 mm Discharges probability [hadron -1 ] Total gain 200 µm 50 µm A1 A2 3 mm PIM « Standard » PIM : extraction efficiency optimized

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 12 Prototypes for spatial resolution measurement 2 prototypes back to back Low material budget Segmented anode : 512 strips (width=150 µm, pitch=195 µm) 1024 GASSIPLEX channels PIM_01 PIM_02 Active area 10x10 cm² Honey comb (5mm) Front-end (GASSIPLEX +12 bits ADC) Removable 55 Fe source to simple gain monitoring

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher % G A2 ~ 100 G A2 ~ 200 Total gain Efficiency [%] Spatial resolution PIM Spatial resolution (for one plane)  x ~51 µm at the beginning of efficiency plateau (G~5000)  +,p Beam (<10 4 /spill) P1 P2 PIM_0 G A2 ~ 100 G A2 ~ 200 Spatial resolution PIM_1

14 MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher Ion Feedback Suppression

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 15 Ion Feedback Filtering (PIM ) 3 mm anode pA 500 lpi CERN mesh 500 lpi 90 Sr (  ~1 MeV) intense source pA I anode I drift, I primary No ion filtering expected because mostly field lines in transfer space are focused inside pre-amplification gap First intrinsic ion filtering Second ion filtering N.B : No mesh alignment (random arrangement) Fractional Ion Feedback Current measured by KEITHLEY picoammeter 125 µm 50 µm V. Lepeltier

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 16 Fractional Ion Feedback B=0T

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 17  Modular prototype and systematic studies allowed us to optimize geometry to reduce discharge rate induced by high hadron flux P disch ~ hadron -1 G~5000)  A multi-stage device using micromeshes with only two amplification stages have very promising performance for tracking particles under high rate conditions. Conclusion  Preliminary results with PIM show good properties to avoid ion feedback without using DC ion gate FIF below could be easily achieved with appropriate meshes  Complementary tests with high magnetic field are needed  Technology investigation is required to scale up towards large area

18 MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher Back-up

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 19 MICROMEGAS (MICRO-MEsh GAseous Structure) Ionisation primaire Dérive des charges primaires Passage de la microgrille pour les e- Multiplication : avalanche électronique Induction du signal Grille 500 LPI nickel (e = 3 à 6 µm) 50 µm Ø=39µm

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 20 Charge spreading Large transfert thickness gap  could be used to spread charge cloud Cosmics Cluster multiplicity 50 µm X mm transfert stage

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 21 Back-up Gain VS E t C ext augmente T e ~ 100 % C ext augmente T e diminue T e diminue plus vite que Cext n’augmente

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 22 Back-up Cext VS gaz

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 23 Caractérisation de l’électronique (1/3) Mesures des piédestaux et du bruit : ~ 1170 canaux ADC ~ 1,4 canaux ADC Réponse homogène de l’ensemble de la chaîne électronique d’acquisition Bruit moyen ~ 1200 e - Seuil 5  ~ 6000 e -

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 24 Back-up

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 25 Etiquetage des décharges Décharge « vue » à travers une capacité Typiquement 1V Objectif : Mesurer P dech en fonction du gain  Nécessité de s’affranchir du gain variable après 1 décharge Véto (qq secondes)

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 26 Back-up GEM + MICROMEGAS µ-grille GEM Drift

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 27 Back-up Influence du champ de transfert (E t ) Augmentation de E t = extraction plus importante  Diminution de P dech pour un gain donné

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 28 Mesures préliminaires Probabilités de décharge avec un détecteur MICROMEGAS :  G A1 > 1000 P dech dépend fortement de la hauteur avec le gap 1- Reproductibilité des résultats MICROMEGAS (125 µm) PS et SPS  G A1 < 1000 P dech quasi-indépendante du gap   10 GeV/c (ligne T9 PS) 2- Caractérisation de la probabilité de décharge pour différents gaps d’amplification Gain total

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 29 Influence de G A2 (pré-amplification) Probabilités de décharge avec un détecteur PIM µm :  Minimiser le gain dans chaque étage d’amplification 125 µm A1 A2 Gain total G A2 ~ 4000 MICROMEGAS 125 µm Gain total G A2 ~ 4000 G A2 ~ 2000 MICROMEGAS 125 µm P G =4000 P G=2000 Gain total G A2 ~ 200 MICROMEGAS 125 µm Gain total G A2 ~ G A1 G A2 ~ 200 MICROMEGAS 125 µm

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 30 Influence du gap de transfert Indépendant de la hauteur de l’espace de transfert 125 µm A1 A2 1 et 3 mm 50 µm A1 A2 3 et 6 mm

MPGD’s workshop, NIKHEF, April 16 th 2008 J. Beucher 31 Influence du gap d’amplification(A1) Gap de 50 µm au contact de l’anode Collection rapide des ions  Minimisation de P corr 125 µm 50 µm A1 A2 3 mm 125 µm A1 A2 3 mm G A2 ~200