E. Mignot, N. Rivière, D. Doppler, I. Vinkovic, P.-H. Bazin Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon (France)

Slides:



Advertisements
Similar presentations
Turbulent flow over groups of urban-like obstacles
Advertisements

Instructor: André Bakker
Hongjie Zhang Purge gas flow impact on tritium permeation Integrated simulation on tritium permeation in the solid breeder unit FNST, August 18-20, 2009.
Basic Governing Differential Equations
ON WIDTH VARIATIONS IN RIVER MEANDERS Luca Solari 1 & Giovanni Seminara 2 1 Department of Civil Engineering, University of Firenze 2 Department of Environmental.
Flow Over Notches and Weirs
VIII. Viscous Flow and Head Loss. Contents 1. Introduction 2. Laminar and Turbulent Flows 3. Friction and Head Losses 4. Head Loss in Laminar Flows 5.
HYDRAULIC 1 CVE 303.
Fluid Dynamics.
Monroe L. Weber-Shirk S chool of Civil and Environmental Engineering Basic Governing Differential Equations CEE 331 June 12, 2015.
Pertemuan Open Channel 2. Bina Nusantara VARIED FLOW IN OPEN CHANNELS.
Modelling of pollution dispersion in natural stream during dry period Yvetta Velísková Institute of Hydrology SAS, Racianska 75, Bratislava, Slovakia.
MECH 221 FLUID MECHANICS (Fall 06/07) Chapter 10: OPEN CHANNEL FLOWS
Reynolds Experiment Laminar Turbulent Reynolds Number
Fluid Mechanics Wrap Up CEE 331 June 27, 2015 CEE 331 June 27, 2015 
Atmospheric turbulence Richard Perkins Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon CNRS – EC Lyon – INSA Lyon – UCBL 36, avenue.
Pertemuan CLOSED CONDUIT FLOW 1
DETAILED TURBULENCE CALCULATIONS FOR OPEN CHANNEL FLOW
CE 1501 Selected Topic: Open Channel Flow Reading: Munson, et al., Chapter 10.
HYDRAULICS AND SEDIMENT TRANSPORT: RIVERS AND TURBIDITY CURRENTS
Notes on Hydraulics of Sedimentation Tanks. A Step by Step Procedure.
1 A combined RANS-LES strategy with arbitrary interface location for near-wall flows Michael Leschziner and Lionel Temmerman Imperial College London.
Chapter 7 continued Open Channel Flow
Hydraulic Routing in Rivers
Evaluating Scour Potential in Stormwater Catchbasin Sumps Using a Full-Scale Physical Model and CFD Modeling Humberto Avila Universidad del Norte, Department.
URANS A PPROACH FOR O PEN - C HANNEL B IFURCATION F LOWS M ODELLING Adrien Momplot, Gislain Lipeme Kouyi, Emmanuel Mignot, Nicolas Rivière and Jean-Luc.
TUSTP 2003 By Ciro A. Pérez May, 2003 DOE Project: HORIZONTAL PIPE SEPARATOR (HPS © )
Water amd wastewater treatemt Hydraulics
VELOCITY PROFILE AND SHEAR STRESSES CALCULATION IN HIGH VOLUME RELATIVE BED ROUGHNESS FLOW Wojciech Bartnik Andrzej Struzynski Krakow Agriculture University.
Dynamic Channel Routing Preissmann Scheme. Dynamic Channel Routing Preissmann Scheme unconditionally stable for  >=0.5 second-order accurate if 
Mathematical Background
Unit 1: Fluid Dynamics An Introduction to Mechanical Engineering: Part Two Fluid dynamics Learning summary By the end of this chapter you should have learnt.
Chapter 8: Flow in Pipes.
ERT 349 SOIL AND WATER ENGINEERING
Overview of Open Channel Flow Definition: Any flow with a free surface at atmospheric pressure Driven entirely by gravity Cross-section can vary with location.
R. Akahori & M.W. Schmeeckle
NUMERICAL SIMULATIONS OF A PASSIVE SCALAR TRANSPORT IN A JET FLOW Laboratoire de Modélisation en Hydraulique et Environnement Prepared by : Nabil MRABTI.
Hydraulic Routing in Rivers Reference: HEC-RAS Hydraulic Reference Manual, Version 4.1, Chapters 1 and 2 Reading: HEC-RAS Manual pp. 2-1 to 2-12 Applied.
© Pritchard Introduction to Fluid Mechanics Chapter 8 Internal Incompressible Viscous Flow.
Dr. Jason Roney Mechanical and Aerospace Engineering
Flow In Circular Pipes Objective ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate.
Open Channel Hydraulics
CE 1501 Flow Over Immersed Bodies Reading: Munson, et al., Chapter 9.
A Numerical Solution to the Flow Near an Infinite Rotating Disk White, Section MAE 5130: Viscous Flows December 12, 2006 Adam Linsenbardt.
DIMENSIONAL ANALYSIS SECTION 5.
Basic Hydrology & Hydraulics: DES 601 Module 16 Open Channel Flow - II.
Statika Fluida Section 3. Fluid Dynamics Objectives Introduce concepts necessary to analyse fluids in motion Identify differences between Steady/unsteady.
Environmental Hydrodynamics Lab. Yonsei University, KOREA RCEM D finite element modeling of bed elevation change in a curved channel S.-U. Choi,
An experimental study of bypass transition in plane Couette flow S. AMALFI, F. LAADHARI & J. F. SCOTT Laboratoire de Mécanique des Fluides et d’Acoustique.
Pipe flow analysis.
Formulations of Longitudinal Dispersion Coefficient A Review:
Energy Equation The expanded Bernoulli's equation
Gas Dynamics of Flow through Valves Method to Estimate the Flow Capacity of Valve Passage…. P M V Subbarao Professor Mechanical Engineering Department.
Basic Hydraulics: Open Channel Flow – II
Theory of Turbine Cascades P M V Subbarao Professor Mechanical Engineering Department Its Group Performance, What Matters.……
TERRAINS Terrain, or land relief, is the vertical and horizontal dimension of land surface. Terrain is used as a general term in physical geography, referring.
Objectives and motivations Experimental setup Results Conclusions
Investigation of Flow in a Model of Human Respiratory Tract
ME 331 – Fluid Dynamics Spring 2008
The Bernoulli Equation
Laminar & turbulent Flow
ERT 349 SOIL AND WATER ENGINEERING
22nd hydrotech conference, 2015 Characteristics of siphon spillways R
Viscous Flow in Pipes.
CHAPTER 6 Viscous Flow in Pipes
Hydrodynamic Concepts
Fluvial Hydraulics CH-3
BAE 6333 – Fluvial Hydraulics
Section 8, Lecture 1, Supplemental Effect of Pressure Gradients on Boundary layer • Not in Anderson.
Lecture 4 Dr. Dhafer A .Hamzah
Presentation transcript:

E. Mignot, N. Rivière, D. Doppler, I. Vinkovic, P.-H. Bazin Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon (France)

2 Elargissement Thèse Han Lei Hydrodynamique environnementale expérimentale au LMFA Thèse Cai Wei Cavité Intersections Thèse PH Bazin Ecoulement torrentiel autour d’un obstacle Lit composé Jet torrentiel * Torrentiel - Fluvial * 3-4 branches * Distribution Q - PIV * Simple - obstacles

E. Mignot, N. Rivière, P.-H. Bazin Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon (France) Open-channel bifurcations: Impact of singularities Impact of singularities on the discharge distribution on the discharge distribution

Introduction Delta Cut-off Island Natural bifurcations

Introduction Severe floods in dense urbanized areas Flow takes place in streets and crossroads (Bonneaud, 2002) Artificial bifurcations Some crossroads are 3-branch bifurcations

Subcritical, 3 branch, open-channel, bifurcation 6 Introduction (Neary et al., 1999) General flow pattern: Dividing interface Recirculation zone Secondary flows Main concern : Prediction of discharge distribution QuQu QdQd QbQb

7 Introduction Ramamurthy et al. (1990) Momentum /x : Ramamurthy et al. (1990) Energy : head loss coefficient unknown Empirical relationship (Rivière et al., 2007) Available Equations to describe the flow Discharge distribution Valid if no obstacle QuQu QdQd QbQb R q (correl.) Rivière et al. (2007)

8 Topic Quantify impact of obstacles near the bifurcation? Present experiment Modification of discharge distribution depends on Flow characteristics (h, U, b …) Obstacle shape and size Obstacle location (Bonneaud, 2002) QuQu QdQd QbQb

9 Experimental set-up White light sheet PIV technics (LMFA – INSA Lyon – Université de Lyon) - 3 or 4 open-channels - Central intersection - Glass walls (optical access) Add particles = PSP  50  m High-frequency camera (30Hz) Velocity measurement Discharge measurement Water depth measurement

Upstream Tank Downstream Tank Lateral Tank Pump QuQu QbQb CdCd CbCb Boundary conditions: Q u : upstream flow-rate C d : downstream weir crest C b : branch weir crest 10 QuQu QbQb QdQd L u =2m L d =2.6m L b =2.6m PIV area Experimental approach (LMFA – INSA Lyon – Université de Lyon) Experimental scheme Channel section 20 cm b=30 cm Measurements: Q b : branch flow-rate h u, h b, h d depths

cm 5cm Methodology Fixed boundary conditions (Q u, C b, C d ) Measure discharge distribution Introduce 9 obstacle one after the other Measure the modification of outlet discharges Obstacle configurations

12 Results : Discharge distribution Q u =2L/s Q b =0.75L/s Q b =0.74L/s Q b =0.77L/s Q b =0.70L/s Q b =0.73L/s No obstacle O-1 O-2 O-4 O-7 O-3 Q b =0.75L/s  Streamwise acceleration Lateral branch blockage Downstream blockage O-5 Q b =0.76L/s Side deflection UxUx

13 Influence of the Froude number Previously described Fr u0 (without obstacle) If Fr u0 , impact of obstacles  Stagnation point depth  and so horizontal pressure gradients  R q0  0.39 ; h u0 /b  0.14 obstacle  Q b obstacle  Q b

Influence of the other flow parameters incoming Froude nb. discharge distribution inlet water depth Dimensional analysis 14 As Fr , impact of obstacle  More complex

Influence of the other flow parameters  R q : moves the separating streamline compared with the obstacle  R q : modifies recirculation width 15 Influence of the initial discharge distribution h u0 /b  0.15 ; Fr u0  Rq0  Rq0 

16 Conclusions Magnitude of discharge modification depends on Location of obstacle Froude number of inflow / reference distribution shape / size not studied here Obstacles modify the discharge distribution by about [-15 ; +10 %] Non negligible modifications when compared to other errors: Sidewalks – Roughness – Shape of crossroads – Exchange with buildings - sewer networks … ?

Current works Separating streamline Rapid main flow Slow recirculation zone Applications * Turbulent modeling * Pollutant dispersion Reynolds shear stress StreamlinesFieldlines Separating streamline 17