O A Corpo 1 Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos O X Y X1X1 Y1Y1 X2X2 Y2Y2 X3X3 Y3Y3 A B P l = 75 mm l.

Slides:



Advertisements
Similar presentations
MC542 Organização de Computadores Teoria e Prática
Advertisements

PROPIEDADES (Z = x - iy) * z1 +z2 = z1 +z2 * z = z * z1z2 =z1 +z2 * Z= Z * z1 / z2= z1/ z2 * Z = -Z Re {Z} = z + z Im {Z} = z - z 2 2i.
3 hr 5 hr 8 hr Hours worked Charge
Hard Instances of the Constrained Discrete Logarithm Problem Ilya MironovMicrosoft Research Anton MityaginUCSD Kobbi NissimBen Gurion University Speaker:
1.1 Line Segments, Distance and Midpoint
ECE555 Lecture 10 Nam Sung Kim University of Wisconsin – Madison
Graphics in Turing. (0,0) (maxx,maxy) Variables that do not have to be declared that give you the maximum value for your x and y co-ordinates. (maxx,0)
3.6 PARALLEL LINES IN THE COORDINATE PLANE 1 m = GOAL
5.3 Inverse Function.
D x D V y 1 L x D L x 1 L x 2 V y 2 V y 3 xDxD y1y1 y2y2 x1x1 x2x2 y3y3 x3x3 y4y4 z.
VHDL Introdução Paulo C. Centoducatte fevereiro de 2005
1. 2 Memória (R-bit register) Circuito Combinatório D1D1 DRDR TRTR T1T1 X1X1 XLXL Y1Y1 YNYN clockreset MEF.
robot con 6 gradi di mobilità
1 Übung 1 Sei D = { a,b,c,d,e } ein skalarer Datentyp Bestimme den kanonischen Repräsentanten von s: x1 = bla x2[a] = 5 x2[b] = 3 x2[c] = 3 x2[d] = 4 x2[e]
Measurement of a Pond Basics of plane geometry Idea of the Coordinate Plane Confining an Area Practical skill Cooperation in the Group Lake measurement.
Measuring Nanostructures. How do we see nanostructures? A light microscope? Helpful, but cannot resolve below 1000 nm An electron microscope? Has a long.
Suggested Activities Unit 1: Unraveling the Problem- Solving Process.
Graph of a Curve Continuity This curve is _____________These curves are _____________ Smoothness This curve is _____________These curves are _____________.
NATURE AND METHODS OF ECONOMICS AUSAF AHMAD Presentation on November 21 st 2007 At Aligarh College of Engineering and Management Aligarh U.P.
Graphs & Linear Equations
The Derivative in Graphing and Application
One-to-One Functions; Inverse Function
Slope of a Line 11-2 Warm Up Problem of the Day Lesson Presentation
Calculating Slope m = y2 – y1 x2 – x1.
Chances Are… You can do it! Activity #5 Five baseball players threw their caps into a sports bag after a ball game. What is the probability that each.
Slope Problems.
Maximal Independent Subsets of Linear Spaces. Whats a linear space? Given a set of points V a set of lines where a line is a k-set of points each pair.
Program verification: flowchart programs Book: chapter 7.
Program Verification Using Hoares Logic Book: Chapter 7.
Program verification: flowchart programs Book: chapter 7.
Multivariate Twin Analysis
Rule Learning – Overview Goal: learn transfer rules for a language pair where one language is resource-rich, the other is resource-poor Learning proceeds.
Linear Equations in Two Variables
Latent variable models for time-to-event data A joint presentation by Katherine Masyn & Klaus Larsen UCLA PSMG Meeting, 2/13/2002.
Chemical Reactions The result of the chemical reaction is a new substance with unique physical and chemical properties. The result of the chemical reaction.
Another example Max z=5x1+12x2+4x3-MR S.t. x1+2x2+x3+x4=10
ABSTRACT: We examine how to detect hidden variables when learning probabilistic models. This problem is crucial for for improving our understanding of.
x1x1 x2x2 (X 1,X 2 ) BY: Grupo CDPYE-UGR This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License.
Science Fair Project Clare Cronin and Carolina Perez-Vargas
Inverting a Singly Linked List Instructor : Prof. Jyh-Shing Roger Jang Designer : Shao-Huan Wang The ideas are reference to the textbook “Fundamentals.
Numbers & Geometry Points and Distances. 6/3/2013 Numbers and Geometry 2 Distance d between numbers a and b d = Example: | = Points and Distances.
Constant, Linear and Non-Linear Constant, Linear and Non-Linear
Graphing Lines Day 0ne. Cover the concepts: Relation Function
On / By / With The building blocks of the Mplus language.
Gradient of a straight line x y 88 66 44 2 44 4 For the graph of y = 2x  4 rise run  = 8  4 = 2 8 rise = 8 4 run = 4 Gradient = y.
1.1 The Cartesian Plane Ex. 1 Shifting Points in the Plane Shift the triangle three units to the right and two units up. What are the three.
A.F 3.1- Graph Functions A.F 3.3- Slope
COORDINATE PLANE.
By Matty Lu and Mc-Welch
Computer Graphics … how renderings are done on a computer. Art 321 Dr. J Parker Winter.
2 x0 0 12/13/2014 Know Your Facts!. 2 x1 2 12/13/2014 Know Your Facts!
Extra Credit Problem 5 Page 76 Gothams Finest Group 3 Saud Aldegaiter Daniel Bonneville Tamara Vail October 18, 2011 IE 416 Dr. Parisay.
2 x /10/2015 Know Your Facts!. 8 x /10/2015 Know Your Facts!
Xiaoying Gao Computer Science Victoria University of Wellington Copyright: Xiaoying Gao, Peter Andreae, Victoria University of Wellington Graphical Output,
Map-making as Graph Drawing Alan Saalfeld Mathematical Cartographer.
function[y,n]=sigadd(x1,n1,x2,n2)
1 Lecture 5 PRAM Algorithm: Parallel Prefix Parallel Computing Fall 2008.
5 x4. 10 x2 9 x3 10 x9 10 x4 10 x8 9 x2 9 x4.
SATISFIABILITY Eric L. Frederich.
CMPUT429/CMPE382 Amaral 1/17/01 CMPUT429/CMPE382 Winter 2001 Topic9: Software Pipelining (Some slides from David A. Patterson’s CS252, Spring 2001 Lecture.
Computational Facility Layout
Quiz Number 2 Group 1 – North of Newark Thamer AbuDiak Reynald Benoit Jose Lopez Rosele Lynn Dave Neal Deyanira Pena Professor Kenneth D. Lawerence New.
CSE202: Lecture 3The Ohio State University1 Assignment.
(1) MAX X1+3X2+2X3+4X4 X1=AM PHONE, X2=AM RIDE, X3=AFT PHONE, X4=AFT RIDE CONSTRAINTS AM: X1+20X2 < 12(60)=720 AFT: 2X3+30X4 < 14(60) = 840 GAS: X2+X4.
(for Prof. Oleg Shpyrko)
BINARY/MIXED-INTEGER PROGRAMMING ( A SPECIAL TYPE OF INTEGER PROGRAMMING)
1/03/09 De 89 à 98. 1/03/09 De 89 à 98 1/03/09 De 89 à 98.
。 33 投资环境 3 开阔视野 提升竞争力 。 3 嘉峪关市概况 。 3 。 3 嘉峪关是一座新兴的工业旅游城市,因关得名,因企设市,是长城文化与丝路文化交 汇点,是全国唯一一座以长城关隘命名的城市。嘉峪关关城位于祁连山、黑山之间。 1965 年建市,下辖雄关区、镜铁区、长城区, 全市总面积 2935.
The reading is 7.38 mm. The reading is 7.72 mm.
Valor de Exposição Exposição. Dose Absorvida Energia absorvida Energia dissipada.
Presentation transcript:

O A Corpo 1 Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos O X Y X1X1 Y1Y1 X2X2 Y2Y2 X3X3 Y3Y3 A B P l = 75 mm l 1 = 75 mm r = 5 mm M 1 P 1 F 1Y F 1X F 2X F 2Y Corpo 2 B A F 2Y F 2X F 3X F 3Y P 2 Corpo 3 F 3Y F 3X P 3 T N Corpo 4 P 4 T

X3X3 Y3Y3 Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos X Y Corpo 4 P 4 T P

X3X3 Y3Y3 Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos X Y Corpo 4 P 4 T P

Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos Corpo 3 N F 3Y F 3X P 3 T

Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos Corpo 2 B A X Y X3X3 Y3Y3 F 2Y F 2X F 3X F 3Y P 2

Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos Corpo 2 B A X Y X3X3 Y3Y3 F 2Y F 2X F 3X F 3Y P 2

Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos Corpo 2 B A X Y X3X3 Y3Y3 F 2Y F 2X F 3X F 3Y P 2

Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos O A Corpo 1 X Y X1X1 Y1Y1 F 1Y F 1X F 2X F 2Y M 1

Cinemática e Cinética de Partículas no Plano e no Espaço Análise Dinâmica dos Corpos O A Corpo 1 X Y X1X1 Y1Y1 F 1Y F 1X F 2X F 2Y M 1