SFGP 2011 Lille 29 nov. – 1er déc. 2011 – Biohydrogène : Etat de l’Art - S. Hiligsmann La production de biohydrogène à partir de substrats carbohydratés.

Slides:



Advertisements
Similar presentations
By: Schmeltz Vanessa ; Di Pascoli Thomas
Advertisements

Biohydrogen production
Gas out Biomas in Biomas out (Digestate) Biogas production.
BioEnergy Production from Food Waste
ANAEROBIC CO-DIGESTION OF ORGANIC FRACTION OF MUNICIPAL SOLID WASTE AND WASTE ACTIVATED SLUDGE AT DIFFERENT RATIOS A. FLOR, L. ARROJA, I. CAPELA Environment.
Methods of Production of Volatile Fatty Acids
UNDERGRADUATE PROJECT’S PROPOSAL SEMESTER I 2012/2013 Biohydrogen Production from Palm Oil Mill Effluent (POME) Using Immobilized Mixed Culture (Sludge)
Phosphorus and Phosphate
1/38 21 – Landfill gas 21 Landfill gas 1. 2/38 21 – Landfill gas “Landfill gas is an explosive topic” (J.Jacobs, 2006)
Anaerobic Digestion: Biomass to Bioenergy Douglas W. Hamilton, Ph.D., P.E. Associate Professor, Biosystems and Agricultural Engineering Waste Management.
SLUDGE u Screenings u Grit u Scum u Solids u Biosolids Substances responsible for offensive character of wastewater Highly organic in nature Pathogenic.
SPECKY GIRLS PRODUCTION AND UTILIZATION OF METHANE SPECKY GIRLS PRODUCTION AND UTILIZATION OF METHANE Apryl Ng Noor Shafika Liao Swee Yun Sharmilla.
Hydrogen Production. Sources of hydrogen Hydrogen is one of the most abundant element in the universe. It can be produced from various sources as 90%
Production of algae coupled to anaerobic digestion in a closed vessel system for bio- fuel production In cooperation with.
Hema Rughoonundun Research Week Outline of Presentation The MixAlco Process Introduction Sludge Materials and Methods Results Fermentation of sludge.
Production of Gaseous Fuels Pongamia Residue P M V Subbarao Professor Mechanical Engineering Department Indian Institute of Technology Delhi, New Delhi.
Waste Management and Energy Opportunities (EDITED) Steve Cox Anaerobe Systems 3/09/2007.
ANAEROBIC DIGESTION OF MUNICIPAL WASTE PRESENTED BY: Mr. Thomas McAndrew Ms. Ciara Coughlan Ms. Ann Phair.
Biogas Production Using Small Scale Biodigester By Shunpei Iguchi.
Increasing biogas production by thermal (70◦C) sludge pre- treatment prior to thermophilic anaerobic digestion Presented by Reem Satti.
Aerobic and Anaerobic Reactor Configurations
Microbial Growth Kinetics
The Anaerobic Digestion Process Andrew Gabriel and Tidasate Success.
ERT 417/4 WASTE TREATMENT IN BIOPROCESS INDUSTRY SEM 1 (2009/2010) ‘Management of Waste’ By; Mrs Hafiza Binti Shukor.
食品生産における排水および廃棄物からのエネルギー回収プロセスのLCA —豆腐生産のケーススタディー
Anaerobic Digestion of Biodiesel and Biodiesel Waste Products James Duncan.
Anaerobic digestion of brewing “waste”. L.S. Nkadimeng, S.T.L. Harrison Energy Postgraduate Conference 2013.
Peter Ciborowski Minnesota Pollution Control Agency
ERT Biofuel BIO ETHANOL What, Why, How, How much, ….
Biological and Chemical Conversion Technologies
High Rate Thermophilic Anaerobic Membrane Bioreactor for Wastewater Treatment by Kaushalya C. Wijekoon Master Student (st107821) EEM/SERD Wastewater Ξ.
Microbial Biotechnology Commercial Production of Microorganism
RL Stevenson Presentation Biological Fuels Daniel M. Jenkins University of Hawai‘i, Mānoa April 27, 2007.
Microbiology. Microbiology of biogas  Anaerobic digestion utilizes a consortium of microbes in four distinct phases  Products of one phase are feedstocks.
The Possibilities of Biological Fuel Cells. Microbial Electricity Generation Microbial fuel cells are based on the recently identified ability of microorganisms.
1 CE 548 II Fundamentals of Biological Treatment.
Anaerobic Co-digestion of Biomass for Methane Production : Recent Research Achievements Wei Wu CE 521 Today I am going to review recently published papers.
Biogas Somporn Jenkunawat.
Section one Answer 5 of the following 6 problems (3 marks each) 1.1) Explain the major reactions of the Sulfur cycle by pointing out: a) the environmental.
Discussion Increase in algal proportion in all the treatments with different inoculums recorded increase in biogas production. However the methane concentration.
Screening of a wide range of pre- treatments for improving the algal biomass solubilization and biogas potential Serge R. Guiot, Caroline Roy and Jean-Claude.
1 CE 548 I Fundamentals of Biological Treatment. 2 Overview of Biological Treatment   Objectives of Biological Treatment:   For domestic wastewater,
The Metabolism of Hydrogen Producing Bacteria Tõnu Malsub TTÜ, 2005.
Anaerobic Treatment Anaerobik Arıtma Biyoteknolojisi
1 Impact of Fluoride on Microorganisms in Wastewater Treatment Chandra Khatri, Valeria Ochoa and Reyes Sierra-Alvarez Department of Chemical and Environmental.
Nutrient recovery from anaerobic co-digestion of Chlorella vulgaris and waste activated sludge Michael Gordon 1, Tyler Radniecki PhD 2, Curtis Lajoie PhD.
BIOGAS REVIEW >>.
BIOMASS ENERGY AND BIOGAS GENERATION Biomass is a renewable energy source that is derived from living or recently living organisms. Biomass includes.
Principles of anaerobic wastewater treatment and sludge treatment Jan Bartáček ICT Prague Department of Water Technology and Environmental Engineering.
S-1007 Multi-State Research Committee
Bacterial Fermentation
1 Respiration The controlled release of energy from glucose, within a cell - 24 hour process.
METHANOGENS AND BIOGAS. Methanogen An anaerobic microorganism that grows in the presence of carbon dioxide and produces methane gas. Methanogens are found.
Prepared by: Pn. Hairul Nazirah Abdul Halim
Anaerobic digestion (AD) transform organic compounds (biomass wastes) to methane biogas by microbes.
Biorenewable Energy Elaine Groom QUESTOR Centre The Queen’s University of Belfast, Northern Ireland 1.
Development of an integrated algal bio-refinery for polysaccharide and bio-fuel production Cesar Moreira 1, Murali Raghavendran 2, Yatin Behl 2, Spyros.
INTRODUCTION Hydrogen production in an upflow anaerobic sludge blanket treating brewery wastewaters A.A Mendez-Revollo*, T.R. Chaparro** *Sanitation Laboratory,
Sudan Raj Panthi Advanced Remediation and Treatment (ART), Lab Biological Phosphorus Removal.
BIOGAS PRODUCTION. Introduction Animal and agricultural wastes constitute a high proportion of biomass and their utilization and recycling is important.
ENVIRONMENTAL BIOTECHNOLOGY
Sources of solid waste. Waste water. gas emissions
CHAPTER 3: HyDROGEN GENERATION BY MICROBIAL CULTURES
Chapter 4: Biofuels from Algae and Seaweeds
ERT 417 Waste Treatment In Bioprocess Industry
SOLID WASTE AS SOURCES OF ENERGY AND FOOD
Biogas Technology.
Fundamental of Biological Treatment
ANAEROBİC WASTEWATER TREATMENT
Learning Outcomes By the end of this lesson: Define respiration
Presentation transcript:

SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann La production de biohydrogène à partir de substrats carbohydratés : état de l'art SFGP 2011 Lille, 29 nov. – 1er déc Serge Hiligsmann, Laurent Beckers, Julien Masset, Christopher Hamilton, Philippe Thonart Walloon Centre of Industrial Biology, University of Liege, Belgium 1

Introduction Processes for hydrogen production Microbial hydrogen production Two-stage anaerobic digestion Advancements in biohydrogen production Microbiology – biochemistry - physiology Bioreactors Researches in University of Liege 2SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

3

–Water electrolyse H 2 O +  ½ O 2 + H 2 –Microbial production – Methane steam reforming (800 °C) CH 4 + H 2 O  CO + 3H 2 CO + H 2 O  CO 2 + H 2 –Partial hydrocarbons oxydation –Coal or biomass gasification (High dry matter) C a H b O g + O 2 + H 2 O  CO 2 + H 2 95 % of H 2 industrial production ( Nm³/year) Hydrogen production 4SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Microbial hydrogen production Clostridium, Ruminococcus, Aeromonas, Bacillus, Escherichia, Citrobacter, Chlorobium, Rhodospirullum, Chromatium,... Microorganisms : Bacteria Algae  phototrophic  chemotrophic 5SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

6 Phototrophic microorganisms Light Chemotrophic microorganisms Anaerobiosis, Nutrients CO 2 + H 2...  6CO H 2 High yields Alcohols, acids,... in aqueous solution...  2CH 3 COOH + 2CO 2 + 4H 2 High production rate Carbone Source C 6 H 12 O 6 Carbone Source SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

COMPLEX ORGANIC MATTER SOLUBLE ORGANIC COMPOUNDS VOLATILE FATTY ACIDS ALCOHOLS Hydrolysis cellulases, amylases proteases, lipases, … Acidogenesis Bacillus, Enterobactéria, … (Carbohydrates, amino acids, fatty acids) Acetogenesis Clostridium, Ruminococcus, … ACETIC ACID CO 2, H 2 Methanogenesis Methanobacter, Methanosarcina, … 7 Biodegradation processes CH 4 CO 2 SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Why ? a two-stage anaerobic digestion  H 2 + CH 4 Resistance to shock loading (not a new topic : Pohland 1971) Rapid production of fuel (acidogenesis faster than methanogenesis) Higher energetic yields 10-30% depending on substrates, process, …  Improve the AD process / integration in agro-food industries  Diversity of energetic fuels Energy density : ED H2 = 33 kWh/kg H 2 = 2.4 ED CH4 Combustion : H 2 + ½ O 2  H 2 O CO 2 = Ø Potential use in fuel cells : Yields FC > Yields engine 8SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Bacterial H 2 production (Clostridium) 9 Hydrogen production yield (mL/g glucose) Time (h) SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Clostridium butyricum 10 Hydrogen production yield (mL/g COD) Glucose Maltose Lactose Starch Sucrose Diversity of carbohydrates substrates Clostridium butyricum SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Dark Fermentation  more adapted for industrial H 2 production from wastewater and biomass  pollution reduction, energy generation  70 to 250 m³ H 2 / ton of COD 11  3 to 12 m³ H 2 per day per m³ of bioreactor (classical AD : 0,3 – 6 m³ CH 4 / m³.d)  substrates = liquid or solid wastes containing carbohydrates (starch, sucrose, lactose, …)  followed by effective methanisation SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Residual organic matter Bioreactor I Bioreactor II CO 2 + H 2 Biogas treatment Fuel cell CO 2 + CH 4 Engine or steam power Steam and mechanic energy Ultimate treatment Brewery effluents m 3 /d wastewaters 1400 mg/L DBO m 3 H kW 150 kW + hot water 1000 kW Natural environment 225 kW 750 kW 12SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Advancements in biohydrogen production Strain selection Optimisation of culture conditions Optimisation of bioreactors Researches in University of Liege 13SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

14 Strain selection AD sludge Clostridium but.Citrobacter f. H 2 production yield (mL/g glucose) Improvement of H 2 production by mixed cultures  selection of spore-forming bacteria thermal, acidic or alkaline treatment SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

15 Strain selection SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

16 Optimisation of culture conditions H 2 production yield (mL/g glucose) Clostridium butyricum CWBI1009 SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Acetate : C 6 H 12 O H 2 O → 2 CH 3 COOH + 4 H CO 2 Butyrate : C 6 H 12 O 6 → CH 3 CH 2 CH 2 COOH + 2 H CO 2 17 Optimisation of metabolic pathways SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Optimisation of bioreactor 2.3 L Sequenced batch mode Lactate Formate Acetate Ethanol Butyrate H 2 yield H 2 production rate  substrate converted through specific metabolic pathways with maximum H 2 yields 18SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann Clostridium butyricum CWBI1009

Feasibility of 2 nd stage 20L Sequenced batch reactor 19  high efficiency of methanogenesis : 170 ml CH 4 /g COD SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Bacterial H 2 production (Clostridium) 20 Hydrogen production (mL/g glucose) Time (h)  negative impact of H 2 partial pressure  need for further investigations SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

CWBI researches and collaborations  CWBI : strain selection, hydrogenases expression, bioreactor design (immobilisation, high G/L transfer, …), scale-up (up to 1 m³) 21  Collaborations : biogas treatment, fuel cell developments (2-220 kW), hydrogenases characterisation, algal biohydrogen production   Companies: industrial developments SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Conclusions 22  advantages of a two-stage anaerobic digestion process Resistance to shock loading, specific optimised conditions (pH, …), high yields and production rate, …  production of two fuels with specific interest H 2 + CH 4  biohydrogen production improved strain selection, pH, bioreactor, …  need for further investigations for optimatisation G/L transfer, stability of microbial populations (immobilisation, …), scale-up, compact bioreactors, … SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann

Thank you for your attention 23SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann