1 Claude Boucher FUSION A promising source of energy Octobre, 2009 Cours de Physique des plasmas
22 Plan Why Fusion ? Why Fusion ? Energy supply Energy supply Climate change Climate change Basic concepts Basic concepts The TOKAMAK (toroidalnaya kamera magnitnaya) The TOKAMAK (toroidalnaya kamera magnitnaya) Power balance of a thermonuclear furnace Power balance of a thermonuclear furnace Confinement time Confinement time Lawson criteria Lawson criteria Break-even vs Ignition Break-even vs Ignition ITER ITER Power plant Power plant Octobre, 2009 Cours de Physique des plasmas
33 World primary energy consumption patterns From BP Statistical Review of World Energy 2008, h ttp:// 462 EJ Octobre, 2009 Cours de Physique des plasmas 1 Mtoe = EJ
44 Energy demand (forecast) 1 Gtoe = 42 EJ IEA World Energy Outlook World energy demand expands by 45% between now and 2030 –an average rate of increase of 1.6% per year –with coal accounting for more than a third of the overall rise Octobre, 2009 Cours de Physique des plasmas
55 Fossil fuel reserves-to-production (R/P) ratios From BP Statistical Review of World Energy 2008, Octobre, 2009 Cours de Physique des plasmas
66 Estimated reserves of the principal non renewable resources EJ ( 278 TWhr) (10 18 joules) Duration(years) World annual energy consumption (2007) ~460 1,a 1 Resource Coal 22, b Oil 6, b Natural gas 5, b Uranium 235 (fission reactors) 2, Uranium 238 and thorium (breeder reactors) 120, Lithium (D-T fusion reactor) Land30,000 Oceans30,000,000 1 Consortium Fusion Expo Europe 2 Intergovernmental Panel on Climat Change (IPCC ) a a forecast for 2050 are between 500 and 800 EJ b X 10 including « non-conventional » sources Octobre, 2009 Cours de Physique des plasmas
77 Renewables (Left) U.S. electricity net generation by all fuels, and (Right) contribution of biomass, wind, geothermal, and solar technologies to the non-hydro renewables wedge. Proceedings of the IPCC SCOPING MEETING ON RENEWABLE ENERGY SOURCES, Lübeck, Germany, 20 – 25 January, 2008 Octobre, 2009 Cours de Physique des plasmas
88 Beauharnois hydro plant Power : MW Power : MW Type : Run-of-the-River Type : Run-of-the-River Number of turbines : 38 Number of turbines : 38 Height : 24 m Height : 24 m Commissioned : Commissioned : Water system: St-Laurence river Water system: St-Laurence river Reservoir : Lake Saint-François Reservoir : Lake Saint-François Reservoir area : 233 km 2 Reservoir area : 233 km 2 Octobre, 2009 Cours de Physique des plasmas
99 Solar panels 1 GWe from maximum solar illumination of 1kW/m 2 => 1km x 1km for 100% efficiency Efficiencies for PV ~10 to 20% with new technologies ~40% Octobre, 2009 Cours de Physique des plasmas
10 All renewable supply Hypothesis 2100 Hypothesis 2100 Population = 9 billion Population = 9 billion High efficiency at 100,000 TWh High efficiency at 100,000 TWh Average of 11 TW ≈ actuel Average of 11 TW ≈ actuel Sources Sources Solar = 40% Solar = 40% Wind = 40% Wind = 40% Other renewable = 20% Other renewable = 20% Wind = 0,6 million km 2 Area larger than France Area Solar = 5,2 million de km 2 = 56% of Canada or US = 2/3 of Australia Source: G. Lafrance, book in preparation, Multimondes, fall Octobre, 2009 Cours de Physique des plasmas
11 CO 2 emissions IEA World Energy Outlook Octobre, 2009 Cours de Physique des plasmas
12 Climate impact (1) 12 Observed changes in (a) global average surface temperature; (b) global average sea level from tide gauge (blue) and satellite (red) data; and (c) Northern Hemisphere snow cover for March-April. All differences are relative to corresponding averages for the period Smoothed curves represent decadal averaged values while circles show yearly values. The shaded areas are the uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from the time series (c). IPCC, Climate Change 2007: Synthesis Report (Valencia, Spain, November 2007) Octobre, 2009 Cours de Physique des plasmas
13 Climate impact (2) United Nations Environment Program SRES (Special Report on Emission Scenarios (IPCC)) Octobre, 2009 Cours de Physique des plasmas
14 Role of “renewables” Solar, wind, biomass, geothermal, … Solar, wind, biomass, geothermal, … “low density” applications “low density” applications ~ 20 % of world supply ~ 20 % of world supply Intensive land use Intensive land use Need for clean, abundant, “high density” source Need for clean, abundant, “high density” source ENTER FUSION Octobre, 2009 Cours de Physique des plasmas
15 D-T reaction E = MC 2 Octobre, 2009 Cours de Physique des plasmas
16 Efficiency Chemical Chemical Fission Fission Fusion Fusion Reaction C+O 2 ->CO 2 n+U 235 n+U 235 => Ba 143 +Kr 91 +2n => Ba 143 +Kr 91 +2n D+T D+T => He+n => He+n Fuel Fuel Coal, Oil Uranium Deuterium and Tritium Reaction Temperature Reaction Temperature (K) (K) Energy produced Energy produced (J/kg) (J/kg) 3.3x x x10 14 Octobre, 2009 Cours de Physique des plasmas
17 Fuel equivalence 0.6 ton 150 tons 10,000,000 barrels 2,100,000 tons From « Fusion, energy for the future », National fusion program, 1991 Relative quantities of fuel required each year in different 1000 MW power plants Fusion Fission Oil Coal 1 pick-up truck 8 semi-trailors 7 super tankers, each of length equivalent to the CN tower 191 trains de 110 wagons each, for a total length of 400 km Octobre, 2009 Cours de Physique des plasmas
18 Fusion reactions Large cross section 50% Small cross section Plus other possible reactions but with very small cross sections 50% Octobre, 2009 Cours de Physique des plasmas
19 Fusion cross sections Octobre, 2009 Cours de Physique des plasmas
20 Tritium breeding n + 6 Li = He +T MeV n + 7 Li = He +T – 2.5 MeV + n Tritium is produced by the interaction between fusion neutrons and lithium in a blanket surrounding the plasma Lithium is abundant in nature. Average concentration in the earth’s crust is about 0.004% (mass) The “consumables” are deuterium and lithium Octobre, 2009 Cours de Physique des plasmas
21 Plasma Mater is ionized: electrons (-) and ions (+) Degree of ionization related to temperature: High temperature means no more neutrals Particles will have “distribution function” Charged particles gyrate around magnetic field lines Octobre, 2009 Cours de Physique des plasmas
22 D-T reaction rate T in KeV m /sec 3 Octobre, 2009 Cours de Physique des plasmas
23 The tokamak The tokamak works like a transformer. a current ramp in the primary circuit generates a constant current (plasma) as the secondary. Plasma current Secondary circuit Toroidal field Poloidal field Helicoidal field Primary circuitToroidal coils Octobre, 2009 Cours de Physique des plasmas
24 Tokamak geometry Axis: Toroidal Poloidal Radial Properties: Elongation Triangularity Aspect ratio = 1/A = a/R q = aB / RB B / B = p / (B 2 / 2 0 ) Octobre, 2009 Cours de Physique des plasmas
25 Magnetic geometries Limiter Divertor Octobre, 2009 Cours de Physique des plasmas
26 Tokamaks existants Source: Pamela-Solano EFDA
27 Tokamak - pulse scenario TOKAMAK pulse Charge transformer rapid fall for breakdown plasma initiated, current ramp up Ohmic heating + auxiliary heating Plateau, Current ramp down Octobre, 2009 Cours de Physique des plasmas
28 Power balance P naT R / 212 Ions 3/2(nT i ) Electrons 3/2 (nT e ) P i,i P i,e P o,i P o,e PRPR PiPi P o = SOURCES (i)LOSSES (o) PP PnPn neutrons alphas PfPf Octobre, 2009 Cours de Physique des plasmas
29 Stabilité thermique SPP L nT P i E R 3 am Rm PMW nm i E ,sec
30 Confinement time (Break-even) PP P io R P P i f n T vEaT E f / Sources = Losses Break-even when the energy out in the fusion products balances the auxiliary power injected This determines break-even condition for the nt E product Q = P f / P i = 1 Octobre, 2009 Cours de Physique des plasmas
31 Confinement time (Ignition) P P P oR For ignition, the energy in the particles is “recycled” and heats the fresh D and T being injected. The fusion reaction is then maintained with P i = 0 Q becomes infinite Octobre, 2009 Cours de Physique des plasmas
32 Confinement time Octobre, 2009 Cours de Physique des plasmas
33 Results From Contemporary Physics Education Project Octobre, 2009 Cours de Physique des plasmas
34 JET: THE WORLD’S LARGEST TOKAMAK Octobre, 2009 Cours de Physique des plasmas
35 Demonstration to date Source: Pamela-Solano, EFDA-JET Watkins, JET Continuous Octobre, 2009 Cours de Physique des plasmas
36 ITER : History 1985 Geneva Summit 1986 start CDA (Conception) US-EU(Canada)-J-FR interim EDA (Engineering) US-EU(Canada)-J-FR EDA 2 (Detailed Engineering ) EU(Canada)-J-FR CTA (technical, negotiations) EU-Canada-J-FR 2005 Site selection (Cadarache France) Construction Experiment 2036 Decommissioning Costs 8500 M$CAD Construction 8500 M$CAD Experiment <1000 M$CAD Decommissioning Octobre, 2009 Cours de Physique des plasmas
37 ITER Main systems: Blanket, supports Divertor plates – up to 20 MW/m 2 (1/2-2/3 total plasma power) Pumping ducts and criopumps, pump injected D and T, He and impurities Gas throughput (200 Pa-m 3 /s) and pumping speed (~ 100 m 3 /s) dictate divertor behavior SC coils- 13 T Mechanical loads of 400 ton on internal components at disruptions Radial loads of 40,000 tons in each coils Octobre, 2009 Cours de Physique des plasmas
38 ITER cross-section Octobre, 2009 Cours de Physique des plasmas
39 ITER : Objectives Design Reach sustained burn in inductive mode, Q=10 Significant parameter window Sufficient duration for stationary plasma (~ hundreds of s) Target demonstration of continuous operation with Q at least 5 Not exclude the possibility of attaining controlled ignition (Q>>10) Technology: demonstration of the availability and the integration of reactor technologies tests of components, Tests of tritium blankets => s of full current in inductive operations => average neutron flux ≥ 0.5 MW/m 2 => average neutron fluence of ≥ 0.3 MWa/m 2 Octobre, 2009 Cours de Physique des plasmas
40 ITER : Program Operate at Q=10 with significant window in parameters for pulse length consistent with characteristic times. Operate at high Q for long pulses. Study continuous operation at Q=5 Reach controlled ignition in favorable conditions Octobre, 2009 Cours de Physique des plasmas
41 ITER PHYSICS The ITER Physics program has multiple components and is developed through experiments on today’s tokamaks, and by theory and modeling, and has, as its prime objective, the development of a capability to predict tokamak performance. Key elements include: Understanding the transition between low (L) and high (H) confinement modes: prediction of power needed for L--> H transition Prediction of core fusion performance in H mode Control and mitigation of MHD instabilities Power and particle control Development of higher performance operation scenarios Identification and understanding of the new physics that will occur under ‘burning plasma’ conditions. Octobre, 2009 Cours de Physique des plasmas
42 AUGJET ITER ITER confinement time Octobre, 2009 Cours de Physique des plasmas
43 BURNING PLASMA PHYSICS At Q > 1 have significant self heating due to fusion alphas. Isotropic energetic population of 3.5 MeV alphas. Plasma is now an exothermic medium and highly non-linear. Alpha particles may have strong resonant interaction with Alfven waves. T i ~ T e since V >> V i, and m >> m e the alphas particles slow predominantly on the electrons. Opportunity for unexpected discovery is very high! Reliable simulation is not possible. Need experiments in the new regime Octobre, 2009 Cours de Physique des plasmas
44 ITER diagnostics installed in ports where possible Each diagnostic port-plug contains an integrated instrumentation package Octobre, 2009 Cours de Physique des plasmas
45 ITER : Status Construction started Construction started Procurement well underway Procurement well underway As of 28 February 2009, the ITER Organization employs 356 staff members: 235 professional and 121 support. All seven Parties are represented amongst the professional staff: 141 originate from the EU, 10 from India, 19 from Japan, 15 from China, 16 from Korea, 17 from Russia, and 17 from the US. Octobre, 2009 Cours de Physique des plasmas
46 Challenges Modeling Modeling Materials Materials Resistance to thermal loads and chocs Resistance to thermal loads and chocs Activation Activation T blanket T blanket Breeding ratio > 1 Breeding ratio > 1 Remote Manipulation Remote Manipulation Assembly Assembly Maintenance Maintenance Octobre, 2009 Cours de Physique des plasmas
47 Thermonuclear power plant From « La fusion thermonucléaire, une chance pour l’humanité », J. Ongena, G. Van Oost et Ph. Mertens, 2001 Ideal scenario for replacement of liquid fossil fuel: Fusion to supply electricity to generate hydrogen for fuel cells. Octobre, 2009 Cours de Physique des plasmas
48 CONCLUSION E=mc 2 Nuclear technology Fission FUSION Octobre, 2009 Cours de Physique des plasmas
49 Thank you ! Merci ! Octobre, 2009 Cours de Physique des plasmas
50 Fusion research in Canada 50 Universities Alberta Saskatchewan Toronto Queen’s INRS Octobre, 2009 Cours de Physique des plasmas Back to the future