Flowlines: The prevailing layout for High Volume Manufacturing.

Slides:



Advertisements
Similar presentations
Agenda of Week X. Layout Capacity planning Process selection Linebalancing Review of week 9 13 Approaches Purposes : Finishing the capacity planning Understanding.
Advertisements

Instructor: Spyros Reveliotis homepage: IE4803-C: Advanced Manufacturing Systems Modeling and.
Process Selection and Facility Layout
Max Newbold: May MANUFACTURING SYSTEM GOVERNMENT TRAFFIC CONDITIONS MARKET DEMAND POLUTIONSOCIAL EXPECTATIONS PRODUCT DESIGN ETHNIC GROUPS ALL THING.
Modeling and Analysis of High Volume Manufacturing Systems.
MODELING AND ANALYSIS OF MANUFACTURING SYSTEMS Session 6 SCHEDULING E
1 Born in Moscow in 1863, Constantin Sergeyevich Stanislavsky had a more profound effect on the process of acting than anyone else in the twentieth century.
Job Shop, Flow Shop, and Batch Processing. 2 Ardavan Asef-Vaziri Jan-1011Operations Strategy: 1- Introduction Facility Layout : Job Shop A C B D Product.
Analysis and Design of Asynchronous Transfer Lines as a series of G/G/m queues: Overview and Examples.
Operations Management
S. Chopra/Operations/Strategy1 Operations Management: Introduction & Strategy Module u Introduction & Administrative u Key Principles of Course »Strategic.
6-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Manufacturing Engineering Department Lecture 1 - Introduction
Product Development. Major Topics The product portfolio of a company concretizes its mission A description of the product selection and development process.
6-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
MFGE 404 Computer Integrated Manufacturing CIM A T I L I M U N I V E R S I T Y Manufacturing Engineering Department Lecture 7– Flexible Manufacturing Systems.
OPSM 301 Operations Management Class 3: Process selection Koç University Zeynep Aksin
Job Shop, Flow Shop, and Batch Processing. 2 Ardavan Asef-Vaziri Aug.-2013Product-Process Matrix Facility Layout : Job Shop A C B D Product 1 Output Input.
Modeling and Analysis of CONWIP-based Flowlines as Closed Queueing Networks.
Methods, Standards, and Work Design
The Simulation Project. Simulation Project Steps a.- Problem Definition b.- Statement of Objectives c.- Model Formulation and Planning d.- Model Development.
Process (Job Shop) Layouts
Facility Design and Layout
1 ISE 195 Fundamentals of Industrial & Systems Engineering.
Chapter 4 Process Design.
1  Types of production systems. 2 Factors Influencing Process Choices  Volume: Average quantity of the products produced in a manufacturing system –Low.
Topics To Be Covered 1. Tasks of a Shop Control Manager.
Analysis and Design of Asynchronous Transfer Lines as a series of G/G/m queues.
Principles of Plant Layout 1. Principle of integration: A good layout is one that integrates men, materials, machines and supporting services and.
Submitted by Pawan kumar sharma Pgdm 2 nd sem.. Objective of presentation Introduction Definition History Production Types of production Operation Objective.
1 Control of Production-Inventory Systems with Multiple Echelons.
Slide 0 of 96 Manufacturing Facility Layout. Slide 1 of 96 Basic Layout Forms Process Product Cellular Fixed position Hybrid.
Facilities design. Main Topics Discrete vs. Continuous Flow and Repetitive Manufacturing Process vs. Product-focused designs and the other currently used.
Chap 4 - Facility Layout: Manufacturing and Services.
PRODUCTION AND OPERATIONS MANAGEMENT Submitted By- Shriram Singh Shekhawat PGDM (II nd Sem.)
Modeling and Analysis of CONWIP-based Flowlines as Closed Queueing Networks.
PLANT LAYOUT. Definitions In the words of James Lundy, 'Plant layout identically involves the allocation of space and the arrangement of equipments in.
PRODUCTION AND OPERATION MANAGEMENT
Analysis and Design of Asynchronous Transfer Lines as a series of G/G/m queues.
Facility Design Issues. Back to the course objectives... Forecasting Strategic Planning Aggregate Production Planning Disaggregation Production Scheduling.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 8 Facility Layout.
1 THE GENERIC 5 TYPES OF PROCESS CHOICE 1.Project 2.Job Shop 3.Batch 4.Line 5.Flow/Continuous Processing Note: Most businesses will select two or more.
Facilities design. Main Topics Process vs. Product-focused designs and the other currently used variations Technology selection and capacity planning.
6-1 McGraw-Hill/Irwin Operations Management, Seventh Edition, by William J. Stevenson Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved.
Definition: The physical positioning of processes, departments, equipment and work areas to optimize an organization’s effectiveness in achieving its operating.
OPSM 301 Operations Management Spring 2012 Class 3:Process Types
Chapter 7: Manufacturing Processes
The Revolution of Just-In-Time (JIT) and Lean Manufacturing
CHAPTER 9 Lean Manufacturing.
State Zero Born in Moscow in 1863, Constantin Sergeyevich Stanislavsky had a more profound effect on the process of acting than anyone else in the twentieth.
IE4803-REV: Advanced Manufacturing Systems Modeling and Analysis Fall 2017 Instructor: Spyros Reveliotis homepage:
McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved
An introduction to Factory Physics
Cellular Layouts Cellular Production Group Technology
Course Summary Organization: A process providing goods and services based on a set of inputs, including raw material, capital, labor and knowledge. The.
Flowlines: The prevailing layout for High Volume Manufacturing
Analysis and Design of Asynchronous Transfer Lines as a series of G/G/m queues: Overview and Examples.
The Revolution of Just-In-Time (JIT) and Lean Manufacturing
Process Selection and Facility Layout
What is Facility Layout?  The layout facility is the physical location of the various departments/units of the facility within the premises of the facility.
PRODUCTION SYSTEMS Terminology Concept: Production: Performance:
Intended Usage Estimation of various performance indices, e.g.,
MENG 447 Manufacturing Systems Automation Chapter 1*
FACILITY LAYOUT Facility layout means:
Facilities Planning and Design Course code:
MANUFACTURING SYSTEMS
Process Selection and Facility Layout Lecture 5. Forecasting Product and Service Design Technological Change Capacity Planning Process Selection Facilities.
Departmental Planning
Operations Management
Process Selection and Facility Layout
Presentation transcript:

Flowlines: The prevailing layout for High Volume Manufacturing

Topics Production Flow in High Volume Discrete Part Manufacturing Manufacturing System Layouts Manufacturing Flowlines and their variations –Synchronous Transfer Lines –Asynchronous Flowlines and the Push vs. Pull dilemma –Asynchronous Transfer Lines –KANBAN-based Lines –CONWIP-based Lines

Discrete Part Manufacturing Systems The end product is the assemblage of a number of components and sub-assemblies, either produced in- house or procured from outside. Frame Building Frame Machining Frame Painting Engines and Transmissions Oil Tank Cell Shocks Cell Steering Wheel Cell Wheels Cell Doors Cell Seats Cell TESTING “Packaging”

Production Flow in discrete part manufacturing A-1 A-2 A-3 A-4 I-1 A-5 O-1-1O-1-2O-1-3O-1-4 O-2-1O-2-2O-2-3 O-4-1O-4-2O-4-3 O-5-1O-5-2 Part 1 Process Plan Part 2 Process Plan Part 4 Process Plann Part 5 Process Plan End Product Part 3 (Procured externally) Main Frame

A typical Organization of the Production Activity in High Volume Discrete Part Manufacturing Raw Material & Comp. Inventory Finished Item Inventory S1,2 S1,1S1,n S2,1S2,2S2,m Assembly Line 1: Product Family 1 Assembly Line 2: Product Family 2 Fabrication (or Backend Operations) Dept. 1Dept. 2Dept. k S1,i S2,i Dept. j

Organizing the Workflow for Backend Operations: Major Layout Types Workspace Drill Mill Grind End Product Store Assembly PaintWeld Saw Lathe Raw Material Store (a) Fixed Product Layout Lathe R.M. Store E.P. Store Assembly SawLatheMillDrill SawMillDrillPaint GrindMillDrillPaint WeldGrindLatheDrill (b) Product Layout R.M. Store E.P. Store Assembly SawDrillPaint WeldGrindPaintMill LatheMill Lathe Drill (c) Group or Cellular Layout R.M. Store E.P. Store Assembly Paint Saw Grind Weld Lathe Mill Drill (d) Process or Functional Layout Adjusted from Francis et. al.

Fixed Product Layout Workpiece remains fixed and the various processes are brought to it Used primarily in ship-building. Sometimes can be the preferred layout when high levels of precision are in order. Production activity is controlled through project management related practices.

Product Layout or Flowline Each part has its own dedicated production line. The line for each part is organized in a way that facilitates the corresponding production flow. Easy to manage and supervise However, a capital-intensive proposition Production volumes must be sufficiently large

Process Layout or Job Shop Facility is organized into departments supporting different functions Production lots are visiting these departments according to their processing needs (process plans) Can result in high equipment utilization and operational flexibility But it also incurs extensive material handling and long production times Necessitates involved production planning and scheduling Appropriate for low-volume production of a large, volatile portfolio of parts

Group or Cellular Layout Parts are grouped into families based on the similarity of their processing requirements. Each family gets a dedicated production facility, known as production cell. Typically cells operate as switching flowlines, with switching taking place between the production of batches of different part types. Frequently switching can involve substantial effort and time, known as setup time. Provide a “middle ground” between a product and a process layout, in terms of operational efficiency and investment

Re-entrant Lines Flowlines in which certain processing stages share the same type of equipment, and therefore, they present “re-entrance”. The motivation for re-entrance and the resulting operational complexities are similar to those underlying the deployment and operation of a cellular layout. Re-entrant lines is a typical layout for semiconductor manufacturing.

The product-process matrix Production volume & mix Jumbled flow (job Shop) Disconnected line flow (cellular) Connected line flow (assembly Line) Continuous flow (chemical plants) Process type Low volume, low standardi- zation Multiple products, low volume Few major products, high volume High volume, high standardization, commodities Commercial printer Heavy Equipment Auto assembly Sugar refinery Void (Figure borrowed from Hayes and Wheelright)

Manufacturing Flowlines: A working abstraction Flow line: A sequence of workstations supporting the production of a single part type. Each workstation consists of one or more identical servers executing one particular stage of the entire production process. processing time at each workstation variable due to inherent process variability but also due to operational detractors, like –machine downtime, –operator unavailability, –experienced set-up times, –preventive maintenance, etc.

Flowline Performance Measures Production rate or throughput, i.e., the number of parts produced per unit time Line capacity, i.e., the maximum sustainable production rate Line (expected) cycle time, i.e., the average time that is spend by any part into the line (this quantity includes both, processing and waiting time). Average Work-In-Porcess (WIP) accumulated at different stations Expected utilization of the station servers. Remark: The above performance measures provide a link between the directly quantifiable and manageable aspects and attributes of the line and the primary strategic concerns of the company, especially those of responsiveness and cost efficiency.

A flowline classification Flowline Synchronous Asynchronous Push e.g., Asynchronous Transfer Line Pull e.g., KANBAN or CONWIP lines

Synchronous Transfer Lines Production is paced by an interconnecting conveyor system No WIP accumulation at the different stations Production control logic is hardwired in the supporting conveyor system Line expensive and inflexible Typically used for high- throughput final assembly c.f. the module on scheduling for further coverage of these lines

Asynchronous Flowlines and the Push vs. Pull dilemma Part advancement between the different stations is not synchronized. Need for buffering capacity at the different stations to accommodate the resulting WIP. Two primary control mechanisms –Push: Lots are released into the line according to an externally specified production plan. A lot that has completed processing at its current station will immediately advance to the next one. –Pull: Target WIP levels are specified for different line segments. Lot advancements that can cause the exceeding of some target WIP levels are blocked. A drop from the target WIP level is a signal for replenishment.

Asynchronous Flowlines and the Push vs. Pull dilemma (cont.) Push properties –Directly connected to production planning –Can easily accommodate changes in target production –(In its basic definition), it lacks a feedback mechanism that can facilitate reaction to operational contingencies –As a result, congestion is possible

Asynchronous Flowlines and the Push vs. Pull dilemma (cont.) Pull properties –Main control variable is WIP –The enforced WIP caps make the line reactive to contingencies and prevent congestion –Need for some (analytical) machinery to translate target production plans to target WIP levels –Need considerable stability of the production plans, since frequent changes of the target WIP levels can lead to chaotic behavior.

Asynchronous Transfer Lines W1W2W3 TH B1B2B3M1M2M3 Some important issues: What is the maximum throughput that is sustainable through this line? What is the expected cycle time through the line? What is the expected WIP at the different stations of the line? What is the expected utilization of the different machines? How does the adopted batch size affect the performance of the line? How do different detractors, like machine breakdowns, setups, and maintenance, affect the performance of the line?

KANBAN-based production lines Station 1Station 2Station 3 Some important issues: What is the throughput attainable by a certain selection of KANBAN levels? What is the resulting cycle time? How do we select the KANBAN levels that will attain a desired production rate? How do we introduce the various operational detractors into the model?

CONWIP-based production lines Station 1Station 2Station 3 FGI Some important issues: Same as those for the KANBAN model, plus How can we compare the performance of such a system to that of an asynchronous transfer line and/or a KANBAN-based system?

The remaining part of the module Modeling and Performance Analysis of Asynchronous Transfer Lines as a Series of G/G/m queues Modeling the impact of operational detractors Employing the above results in line diagnostics Design of Asynchronous Transfer Lines Modeling and Performance Analysis of CONWIP- based production lines through Closed Queueing Networks An integrating framework for bounding and shaping the performance of a production line Analyzing the impact of batching on the system performance and designing optimized batching policies