Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.

Slides:



Advertisements
Similar presentations
Lab Course CFD Preliminay Discussion Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Advertisements

Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
Scientific Computing Lab Results Worksheet 2 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Introduction to COMSOL - Multiphysics Dheevatsa Mudigere Institut für Informatik Scientific Computing in Computer Science.
1 Systems of Linear Equations Iterative Methods. 2 B. Iterative Methods 1.Jacobi method and Gauss Seidel 2.Relaxation method for iterative methods.
1 Systems of Linear Equations Iterative Methods. 2 B. Direct Methods 1.Jacobi method and Gauss Seidel 2.Relaxation method for iterative methods.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 20 Solution of Linear System of Equations - Iterative Methods.
How to use Matrix Market matrices in Matlab The Matrix Market is an interesting collection of matrices from a variety of applications.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 19 Solution of Linear System of Equations - Iterative Methods.
Stack-oriented memory allocation... Michael Bader, M. Mehl, Christoph Zenger, Informatik V, TU München Applications of Space Filling Curves Michael Bader.
ITERATIVE TECHNIQUES FOR SOLVING NON-LINEAR SYSTEMS (AND LINEAR SYSTEMS)
Numerical Linear Algebra IKI Course outline Review linear algebra Square linear systems Least Square Problems Eigen Problems Text: Applied Numerical.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II From Gaussian Elimination to Multigrid – A Recapitulation Dr. Miriam Mehl.
1 Computational Methods II (Elliptic) Dr. Farzad Ismail School of Aerospace and Mechanical Engineering Universiti Sains Malaysia Nibong Tebal Pulau.
Elliptic PDEs and the Finite Difference Method
Introduction to Scientific Computing II Overview Michael Bader.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II
Part 3 Chapter 12 Iterative Methods
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Solving Scalar Linear Systems A Little Theory For Jacobi Iteration
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
9 Nov B - Introduction to Scientific Computing1 Sparse Systems and Iterative Methods Paul Heckbert Computer Science Department Carnegie Mellon.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Linear Systems Numerical Methods. 2 Jacobi Iterative Method Choose an initial guess (i.e. all zeros) and Iterate until the equality is satisfied. No guarantee.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
1 Gauss-Seidel Lecture Notes Dr. Rakhmad Arief Siregar Universiti Malaysia Perlis Applied Numerical Method for Engineers Chapter 11.
Scientific Computing Lab
Explicit Approximation
Solving Systems of Linear Equations: Iterative Methods
بسم الله الرحمن الرحيم.
Scientific Computing Lab
Iterative Methods Good for sparse matrices Jacobi Iteration
Introduction to Scientific Computing II
Pressure Poisson Equation
Scientific Computing Lab
Introduction to Scientific Computing II
Matrix Methods Summary
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Stencil Quiz questions
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Stencil Quiz questions
Scientific Computing Lab
Numerical Analysis Lecture13.
Scientific Computing Lab
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Spatial Discretisation
Linear Algebra Lecture 16.
Home assignment #3 (1) (Total 3 problems) Due: 12 November 2018
Presentation transcript:

Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science

Worksheet 3 – Solution N x = N y =3

Worksheet 3 – Solution 1) m-file create_matrix.m for m=1:N_y for k=1:N_x i = (m-1)*N_x+k; A(i,i) = -2*(N_x+1)^2-2*(N_y+1)^2; if ~(k==1) A(i,i-1) = (N_x+1)^2; end … if ~(m==1) A(i,i-N_x) = (N_y+1)^2; end … end

Worksheet 3 – Solution 2) m-file GaussSeidel.m while (res>0.0001) res=0.0; for m=2:N_y+1 for k=2:N_x+1 x_m(k,m)=(d_1*(x_m(k-1,m)+x_m(k+1,m))+… end for m=2:N_y+1 for k=2:N_x+1 res=res+(b((m-2)*N_x+k-1)+a_ii*x_m(k,m)-… end res=sqrt(res/(N_x*N_y)); end

Worksheet 3 – Solution 3) m-file worksheet3.m tic; x=A\b; time(1)=toc; memory(1)=numel(A)+numel(b)+numel(x); %transform x to a matrix for visualisation x_m=zeros(N_x+2,N_y+2); for k=2:N_x+1 for m=2:N_y+1 x_m(k,m)=x((m-2)*N_x+k-1); end end … subplot(2,1,1); mesh(coord1,coord2,x_m); subplot(2,1,2);contour(coord1,coord2,x_m);

Worksheet 3 – Solution 3) m-file worksheet3.m S=sparse(A); tic; x=S\b; time(2)=toc; memory(2)=nnz(S)+numel(b)+numel(x);

Worksheet 3 – Solution 3) m-file worksheet3.m tic; x_m=GaussSeidel(b,N_x,N_y); time(3)=toc memory(3)=numel(b)+numel(x_m)

Worksheet 3 – Solution N x = N y =7

Worksheet 3 – Solution N x = N y =15

Worksheet 3 – Solution N x = N y =31

Worksheet 3 – Solution N x = N y =63

Worksheet 3 – Solution direct solution with full matrix N x, N y runtime storage2,49951,075925,44315,760,899

Worksheet 3 – Solution direct solution with sparse matrix runtime storage3151,5156,60327,531 N x, N y runtime storage2,49951,075925,44315,760,899

Worksheet 3 – Solution Gauss-Seidel without explicit matrix runtime storage ,0508,194 iterations runtime storage3151,5156,60327,531 N x, N y runtime storage2,49951,075925,44315,760,899

Worksheet 3 – Solution error – convergence order N x, N y error * * *10 -5 error red q=2