The Long and the Short of it: Some Fundamentals about Nuclear Isomers Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK e-mail:

Slides:



Advertisements
Similar presentations
Some (more) Nuclear Structure
Advertisements

LOI for the AGATA-PRESPEC campaign, GSI Spectroscopy and B(E2) measurements in neutron rich Mo nuclei: Search for shape transitions near the astrophysical.
Penning-Trap Mass Spectrometry for Neutrino Physics
Isomer Spectroscopy in Near-Spherical Nuclei Lecture at the ‘School cum Workshop on Yrast and Near-Yrast Spectroscopy’ IIT Roorkee, October 2009 Paddy.
4/29/20151Cosenors - BentleyOverview Physics of Proton-rich Nuclei in the UK Mike Bentley (Univ. of York, UK) Physics of Proton-rich Nuclei in the UK Mike.
1. Isospin Symmetry and Coulomb Effects Towards the Proton Drip-Line RISING Experiment performed October 2003 Keele, GSI, Brighton, Lund, Daresbury, Surrey,
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
From Magic 208 Pb to the 170 Dy Mid-Shell Paddy Regan WNSL, Yale University, New Haven, CT and Dept. of Physics, University of Surrey, UK
Isomers and shape transitions in the n-rich A~190 region: Phil Walker University of Surrey prolate K isomers vs. oblate collective rotation the influence.
Multinucleon Transfer Reactions – a New Way to Exotic Nuclei? Sophie Heinz GSI Helmholtzzentrum and Justus-Liebig Universität Gießen Trento, May ,
Deep-Inelastic and Multinucleon Reactions with Discrete Gamma  ray Spectroscopy: A Brief Review Paddy Regan Dept. of Physics University of Surrey, UK.
Production of Exotic Nuclear Isomers in Fragmentation and Deep-Inelastic Reactions Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2.
Angular momentum population in fragmentation reactions Zsolt Podolyák University of Surrey.
University of Brighton 30 March 2004RISING stopped beam physics workshop Microsecond isomers in A~110 nuclei Few nuclei have oblate ground states (~86%
The Long and the Short of it: Measuring picosecond half-lives… Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK
Future Challenges Using Decay Spectroscopy with Projectile Fragmentation and In-Beam Deep Inelastic Reactions Paddy Regan Dept. of Physics University of.
Doctoral Defense of Barak Hadina 18 th January 2008 In-Beam Study of Extremely Neutron Deficient Nuclei Using the Recoil Decay Tagging Technique Opponent:
New Isomers from Fast Fragmentation Reactions Dr. Paddy Regan Dept. of Physics University of Surrey, Guildford, GU2 7XH, UK
Isomer Spectroscopy in Near-Spherical Nuclei Lecture at the ‘School cum Workshop on Yrast and Near-Yrast Spectroscopy’ IIT Roorkee, October 2009 Paddy.
From Vibrations to Rotations as a Function of Spin Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK
GRETINA experiments with fast beams at NSCL Dirk Weisshaar,  GRETINA and fast-beam experiments  Some details on implementation at NSCL  Performance.
Isospin impurity of the Isobaric Analogue State of super-allowed beta decay experimental technique isospin impurity determination Bertram Blank, CEN Bordeaux-Gradignan.
N. Saito The RISING stopped beam physics meeting Technical status of RISING at GSI N. Saito - GSI for the RISING collaboration Introduction Detector performance.
Cosmic Alchemy: How Are We Made ? Prof. Paddy Regan FInstP Department of Physics University of Surrey Guildford, GU2 7XH
Noyaux CERN- ISOLDE Yorick Blumenfeld.
Recent Results in Fragmentation Isomer Spectroscopy with RISING Paddy Regan Dept. of Physics University of Surrey Guildford, GU2 7XH, UK
Making Gold : Nuclear Alchemy Prof. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH
1 undressing (to fiddle the decay probability) keV gamma E0, 0 + ->0 + e - conversion decay E x =509 keV, T 1/2 ~20 ns Fully stripping.
Spectroscopy of the low lying states of the neutron rich Iodine nucleus ( 134 I ) T. Bhattacharjee 1, S.K. Das 2, D. Banerjee 2, A. Saha 1, P. Das 1, S.
Nuclear Structure studies using fast radioactive beams J. Gerl SNP2008 July Ohio University, Athens Ohio USA –The RISING experiment –Relativistic.
The excitation and decay of nuclear isomers Phil Walker CERN and University of Surrey, UK 3. Isomers at the limits of stability ● p decay ● n decay ● α.
Isomer Studies as Probes of Nuclear Structure in Heavy, Neutron-Rich Nuclei Dr. Paddy Regan Dept. of Physics University of Surrey Guildford, GU2 7XH
Fast timing measurements at the focal plane of the Solenogam  -e - spectrometer (and some other ideas…) Greg Lane.
Pygmy Dipole Resonance in 64Fe
N = Z N=Z line coincides with doubly-magic core Single-particle states wrt 100 Sn core Neutron-proton correlations in identical orbitals Neutron-proton.
B-1 Fragmentation – 0 Introduction Generalities Isotopic distributions Neck emission Participant-spectator model Fragment separators LISE of GANIL FRS.
Recent Nuclear Structure and Reaction Dynamics Studies Using Mutlinucleon Transfer Reactions Paddy Regan Dept. of Physics University of Surrey,UK
Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
AGATA Physics Workshop Istanbul, Turkey May 4-7, 2010 G. Duchêne Deformation in N=40 nuclei G. Duchêne, R. Lozeva, C. Beck, D. Curien, F. Didierjean, Ch.
Sun The excitation and decay of nuclear isomers Phil Walker CERN and University of Surrey, UK.
Nanuf03, Bucharest, Stefan Kopecky Traps for fission product ions at IGISOL Experimental Facilities Mass Measurements Status and Future Perspectives.
12/17/20151NuPECC Meeting - BentleyOverview Gamma-ray Spectroscopic Studies of Exotic Nuclei: Towards NuSTAR Mike Bentley (University of York, UK) Gamma-ray.
Β decay of 69 Kr and 73 Sr and the rp process Bertram Blank CEN Bordeaux-Gradignan.
W. Nazarewicz. Limit of stability for heavy nuclei Meitner & Frisch (1939): Nucleus is like liquid drop For Z>100: repulsive Coulomb force stronger than.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Prof. Paddy Regan Department of Physics
Horizontal Evaluation (Topical Review) on K-Isomers in Deformed Nuclei Filip G. Kondev 17 th NSDD Network meeting, St. Petersburg, Russia, 2007 Nuclear.
Nuclear Spectrcosopy in Exotic Nuclei Paddy Regan Dept,. Of Physics University of Surrey, Guildford, UK
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
Observation of new neutron-deficient multinucleon transfer reactions
Decay studies in Exotic, Neutron- Rich A~200 Nuclei Steven Steer for the Stopped Beam RISING Collaboration Dept. of Physics, University of Surrey Guildford,
Exotic neutron-rich nuclei
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 3 Deformed.
Determining the limits to K isomerism Phil Walker.
March, 2006SERC Course1  Z>92 (Heaviest Element in Nature) and upto Z= achieved by n irradiation or p,  and d bombardment in Cyclotron ( )
Physics at the extremes with large gamma-ray arrays Lecture 3 Robert V. F. Janssens The 14 th CNS International Summer School CNSSS15 Tokyo, August 26.
Technical solutions for N=Z Physics David Jenkins.
The excitation and decay of nuclear isomers
Properties of neutron-rich hafnium high-spin isomers: P-325
Emmanuel Clément IN2P3/GANIL – Caen France
Decay spectroscopy with LaBr3(Ce) detectors at RIKEN and GSI
Coupling of germanium detectors to the ISS
Beta and isomer delayed spectroscopy of neutron-rich Dy to Os Nuclei: Mapping shape evolution and Quadrupole collectivity at large neutron excess. Paddy.
Isomers and shape transitions in the n-rich A~190 region:
Investigation of 178Hf – K-Isomers
Presentation transcript:

The Long and the Short of it: Some Fundamentals about Nuclear Isomers Paddy Regan Dept. of Physics, University of Surrey, Guildford, GU2 7XH, UK

Isomers in Nature, nuclear astrophysics aspects – 26 Al in r-p processed path, inversion of states – 180 Ta, nature’s only ‘stable’ isomer (power!) – 176 Lu, cosmic chronometer and thermometer –All r-process path and structure of odd-odds !!! Production and identification of isomers ? –Fusion-evap, projectile frag. Deep-inelastics, spallation, neutron capture… –electronic timing, proj. frag. –Mass separation for long-lived isomers Cheating with isomer half-lives….undressing! – 74 Kr (GANIL) bare, 201,200 Pt (GSI) H-like

Outline of Talk What are isomers and what can you tell from them. Where do you find isomers ? How might you measure them ? Beta-decaying high-spin isomer(s) in 177 Lu ? On to the mid-shell ( 170 Dy). Future ? Projectile fragmentation, undressing…..

What is an isomer ? Metastable (long-lived) nuclear excited state. ‘Long-lived’ could mean ~ seconds, shape isomers in alpha-clusters or ~10 15 years 180 Ta 9 - ->1 + decay. Why/when do you get isomers? If there is (i) large change in spin (‘spin-trap’) (ii) small energy change (iii) dramatic change in structure (shape, K-value) What do isomers tell you ? Isomers occur due to single particle structure.

Walker and Dracoulis, Physics World Feb. 1994

E x >1MeV, T 1/2 >1ms (red), T 1/2 >1hour (black) From Walker and Dracoulis, Nature 399, p35 (1999)

 decay to states in 208 Pb. 212 Po, high-spin  - decaying yrast trap. (also proton decaying isomers, e.g, 53 Co PLB33 (1970) 281ff. E0 (ec) decay 74 Kr, shape isomer High-spin, yrast-trap (E3) in 212 Fr K-isomer in 178 Hf

Seniority (spherical shell residual interaction) Isomers

Types of isomers (b) K-isomers, eg, 178 Hf, K=8 - state K=0, I=8 + K=8, I=8 - T 1/2 =4 secs Single particle spin can align on the axis of symmetry giving large K values. Decay selection rule requires  ie large K- changes require high (slow) multipoles. K=8 -, I=8 - K=0, I=8 + Instead of E1 decay, need M8! (a) Spin traps, eg. 26 Al, (N=Z=13) 0 + state. 5 +, T=0 0 keV, T 1/2 =7.4x10 5 yrs 0 +, T= keV, T 1/2 =6.3 secs (decays direct to 26 Mg GS via superallowed Fermi  + …forking in rp-process (decays to 2 + states in 26 Mg via forbidden,  l=3 decays).

Expect to find K-isomers in regions where high-K orbitals are at the Fermi surface. Also need large, axially symmetric deformation (      Conditions fulfilled at A~ rare-earth reg. High-  single particle orbitals from eg. i 13/2 neutrons couple together to give energetically favoured states with high-K (=  i ).

Search for long (>100ms) K-isomers in neutron-rich(ish) A~180 nuclei. low-K high-K mid-K j K Walker and Dracoulis Nature 399 (1999) p35 (Stable beam) fusion limit makes high-K in neutron rich hard to synthesise

Some ‘special’, exotic cases! – 178 Hf K-isomer with many branches….e.g., E5 decays. – 176 Lu, chosmothermoter for s-process. – 26 Al decay seen from space as example of nucleosynthesis, rp-process ‘by-pass’. –Nuclear batteries/gamma-ray lasers, can we de-excite the isomers ? ( 180 Ta paper by PMW, GDD, JJC; 178 Hf 31 yrs state?).

Smith, Walker et al., submitted to Phys. Rev. C

Full-sky Comptel map of 1.8 MeV gammas in 26 Mg following 26 Al GS beta-decay. (a) Spin traps, eg. 26 Al, (N=Z=13) 0 + state. 5 +, T=0 0 keV, T 1/2 =7.4x10 5 yrs 0 +, T= keV, T 1/2 =6.3 secs (decays direct to 26 Mg GS via superallowed Fermi  + …forking in rp-process (decays to 2 + states in 26 Mg via forbidden,  l=3 decays).

N=Z, isospin isomers, potentially important consequences for rp-process path. See e.g., Coc, Porquet and Nowacki, Phys. Rev. C61 (1999)

Astrophysical Consequences of Isomers  Ta is ‘stable’ in its isomeric state, but its ground state decays in hours! Longstanding problem as to how the isomeric state is created in nature (via eg. S-process). Possible mechanism via heavier nuclei spallation or K- mixing of higher states in 180 Ta.

Figure from Wiescher, Regan and Aprahamian, Physics World, Feb For explanation see Walker, Dracoulis and Carrol Phys. Rev. C (R) (2001) K=9 - isomer might be de-excited to 1 + ground state through intermediate path with states of K  =5 +.

7 - ground state, 4x10 10 yrs 1- excited state, 4hrs  123 keV 176 Lu 176 Lu survival depends on not exciting  -decaying isomer

Bohr and Mottelson, Phys. Rev. 90, 717 (1953) Wrong spin for isomer (I  >11 shown later to be 8 - by Korner et al. Phys. Rev. Letts. 27, 1593 (1971)). K-value and real spectroscopy very imporant in understanding isomers.

How do you measure isomers ? ns : Use in-beam electronic techniques (eg. start-stop) ns -> ms: In-flight technique, projectile fragmentation. 100 ms -> hours: On-line mass-separator (eg. GSI set-up). > hours: (Mass diffs. in eg, traps, coupled cyclotrons etc.)

In-beam, electronic technique (  t) eg, PHR et al. Nucl. Phys. A586 (1995) p351 Fusion-evaporation reaction with pulsed beam (~1ns), separated by fixed period (~500ns). Using coincidence gamma-rays to see across isomer

100 Mo MeV GAMMASPHERE + CHICO TLFs BLFs elastics

Isomer gating very useful in DIC experiments. Test with known case…..

primary beam 1GeV/u Production target Central focus, S2 Final focus, S4  E(Z 2 ) catcher degrader dipole, B  scint MW=x,y scint (veto) Use FRS (or LISE3) to ID exotic nuclei. Transport some in isomeric states (TOF~ x00ns). Stop and correlate isomeric decays with nuclei id. eg. R. Grzywacz et al. Phys. Rev. C55 (1997) p1126 -> LISE C.Chandler et al. Phys. Rev. C61 (2000) >LISE M. Pfutzner et al. Phys. Lett. B444 (1998) p32 -> FRS

Chandler et al. Phys. Rev. C61 (2000) Ge 69 Se 76 Rb

Heaviest odd-odd,N=Z gammas, isobaric analog states ? 86 Tc, C. Chandler et al. Phys. Rev. C61 (2000)

8 + isomer in 78 Zn, real evidence of 78 Ni shell closure. J.M.Daugas et al. Phys. Lett. B476 (2000) p213

74 Kr isomer from 92 Mo fragmentation at GANIL. 456 keV appears to decay (a) too fast (500 ns flight time) and (b) too slow for measured value of 2 + state (~25 ps). Effect of undressing the nucleus of its e - and switching off electron-conversion decay mode…see later.

from Bouchez et al., Phys. Rev. Lett (2003)

Gamma-gamma analysis on 200 Pt isomer (21 ns!), Caamano et al. Nucl. Phys. A682 (2001) p223c; Acta Phys. Pol. B32 (2001) p763

136 Sb 135 Te Use FRS to select projectile fission products (forward boosted ones). Note transmission a few %. T 1/2 =565(50) ns state in 136 Sb (Z=51, N=85) M. Mineva et al. Eur. Phys. J. A11 (2001) p9-13

170 Dy, double mid-shell, may be best case yet for ‘pure’ K-isomer see PHR et al. Phys. Rev. C65 (2002)

33 ns isomer in 195 Os (last stable 192 Os), useful test of structure in prolate/oblate shape coexistence region. 194 Os Wheldon et al. Phys. Rev. C63 (2001) (R) First id of ‘doubly mid-shell’ nucleus, 170 Dy (N=104, Z=66). K=6 + isomers predicted for well deformed N=104 nuclei. TRS calcs (F.Xu) predict a very ‘stiff’, highly deformed prolate nucleus. Could be the best K-isomer? Data from M.Caamano et al.

C. Schlegel et al.Physica Scripta T88 (2000) p72 High spins (>35/2) populated

Proton drip line isomer physics from 208 Pb fragmentation. N=74 chain of K  =8 - isomers. Next in chain would be 140 Dy, proton decay daughter of (deformed) 141 Tb. Isomers orginally seen in fusion-evap (ANU data) A.M.Bruce et al. Phys. Rev. C50 (1994) p480 and C55 (1997) p620

M. de Jong et al. Nucl. Phys. A613 (1997) p435 M. Pfutzner et al. Phys. Rev. C & Acta. Phys. Pol. (submitted)

Isomeric Ratio Calculations M. Pfutzner et al. Phys Rev. C65, (2002)

M. Pfutzner et al. Phys Rev. C65, (2002)

Modified from Introductory Nuclear Physics, Hodgson, Gadioli and Gadioli Erba, Oxford Press (2000) p509 Aim? To perform high-spin physics in stable and neutron rich nuclei. Problem: Fusion makes proton-rich nuclei. Solutions? (a)fragmentation (b) binary collisions/multi-nucleon transfer See eg. Broda et al. Phys. Rev Lett. 74 (1995) p868 Juutinen et al. Phys. Lett. 386B (1996) p80 Wheldon et al. Phys. Lett. 425B (1998) p239 Cocks et al. J. Phys. G26 (2000) p23 Krolas et al. Acta. Phys. Pol. B27 (1996) p493 Asztalos et al. Phys. Rev. C60 (1999)

Online-Mass Separation Technique Select by mass Select by decay times Lifetimes from grow-in curve Surrey/GSI/Liverpool, 136 Xe+Ta nat

A=184 A=185 A=186 A=183 A= MeV/u on to 186 W target in thermal ion source (TIS), tape speed 160 s. Mass selection achieved using dipole magnet in GSI Online mass separator (ASEP). Z selection by tape speed (ie. removing activity before it decays) and ion source choice. See Bruske et al. NIM 186 (1981) p61 S. Al Garni et al. Surrey/GSI/Liv./Goettingen/Milano

Gate on electron (  or ec) at implantation point of tape drive, gives ‘clean’ trigger. Use add-back Use grow-in curve technique R=A o (1-exp(t/  Select cycle length for specific , add together multiple tape cycles.

Basic Technical Requirements for Studies with Isomers Beam pulsing, good t=0 reference for short (ns) lifetimes. In-flight separator (eg. FMA, LISE, FRS...) for ~microsecond-ms decays. Tape drive/helium jet system for 10ms->hours lifetimes Traps, cyclotrons etc. for longer lived species