EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.

Slides:



Advertisements
Similar presentations
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE445S Real-Time Digital Signal Processing Lab Spring.
Advertisements

Review of Frequency Domain
Chapter 8: The Discrete Fourier Transform
Continuous-Time Convolution Linear Systems and Signals Lecture 5 Spring 2008.
EECS 20 Chapter 9 Part 21 Convolution, Impulse Response, Filters In Chapter 5 we Had our first look at LTI systems Considered discrete-time systems, some.
Continuous-Time Convolution EE 313 Linear Systems and Signals Fall 2005 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian.
Image (and Video) Coding and Processing Lecture 2: Basic Filtering Wade Trappe.
Discrete-Time Convolution Linear Systems and Signals Lecture 8 Spring 2008.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
3.0 Fourier Series Representation of Periodic Signals
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
Systems: Definition Filter
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE445S Real-Time Digital Signal Processing Lab Spring.
Lecture 9 FIR and IIR Filter design using Matlab
Digital Signals and Systems
EE513 Audio Signals and Systems Digital Signal Processing (Systems) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Discrete-Time and System (A Review)
1 Signals & Systems Spring 2009 Week 3 Instructor: Mariam Shafqat UET Taxila.
Chapter 2: Discrete time signals and systems
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
Interpolation and Pulse Shaping
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 313 Linear Systems and Signals Spring 2013 Continuous-Time.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
EE313 Linear Systems and Signals Fall 2005 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
Fourier Analysis of Discrete-Time Systems
Continuous-Time Convolution EE 313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian.
Signals Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE 313 Linear Systems and Signals Fall 2010.
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin Lecture 4 EE 345S Real-Time.
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
1 Lecture 1: February 20, 2007 Topic: 1. Discrete-Time Signals and Systems.
3.0 Fourier Series Representation of Periodic Signals 3.1 Exponential/Sinusoidal Signals as Building Blocks for Many Signals.
EE313 Linear Systems and Signals Spring 2013 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
Department of Electrical and Computer Engineering Brian M. McCarthy Department of Electrical & Computer Engineering Villanova University ECE8231 Digital.
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE345S Real-Time Digital Signal Processing Lab Fall.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
Fourier Analysis of Signals and Systems
Linear Time-Invariant Systems Quote of the Day The longer mathematics lives the more abstract – and therefore, possibly also the more practical – it becomes.
ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Causality Linearity Time Invariance Temporal Models Response to Periodic.
EEE 503 Digital Signal Processing Lecture #2 : EEE 503 Digital Signal Processing Lecture #2 : Discrete-Time Signals & Systems Dr. Panuthat Boonpramuk Department.
ES97H Biomedical Signal Processing
Discrete-Time Signals and Systems
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
1 Prof. Nizamettin AYDIN Digital Signal Processing.
Course Outline (Tentative) Fundamental Concepts of Signals and Systems Signals Systems Linear Time-Invariant (LTI) Systems Convolution integral and sum.
Common Signals Prof. Brian L. Evans
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
Signals and Systems Analysis NET 351 Instructor: Dr. Amer El-Khairy د. عامر الخيري.
Description and Analysis of Systems Chapter 3. 03/06/06M. J. Roberts - All Rights Reserved2 Systems Systems have inputs and outputs Systems accept excitation.
Chapter 2. Signals and Linear Systems
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin Lecture 3
EE345S Real-Time Digital Signal Processing Lab Fall 2006 Lecture 17 Fast Fourier Transform Prof. Brian L. Evans Dept. of Electrical and Computer Engineering.
Review of DSP.
Time Domain Representations of Linear Time-Invariant Systems
Discrete Time Signal Processing Chu-Song Chen (陳祝嵩) Institute of Information Science Academia Sinica 中央研究院 資訊科學研究所.
Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin EE445S Real-Time Digital Signal Processing Lab Spring.
Finite Impulse Response Filters
Chapter 2. Signals and Linear Systems
Review of DSP.
Image Enhancement in the
The Laplace Transform Prof. Brian L. Evans
Sampling and Reconstruction
Frequency Response Prof. Brian L. Evans
Description and Analysis of Systems
UNIT V Linear Time Invariant Discrete-Time Systems
Finite Impulse Response Filters
Review of DSP.
Presentation transcript:

EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin Discrete-Time Convolution

7 - 2 Discrete-time Convolution Output y[n] for input x[n] Any signal can be decomposed into sum of discrete impulses Apply linearity properties of homogeneity then additivity Apply shift-invariance Apply change of variables

7 - 3 Discrete-time Convolution Filtering viewpoint Hold impulse response h[n] in place and change variables Flip and slide input signal x[n] about impulse response Example of finite impulse response (FIR) filter Impulse response has finite extent (non-zero duration) x[n]x[n] y[n]y[n] y[n] = h[0] x[n] + h[1] x[n-1] = ( x[n] + x[n-1] ) / 2 n h[n]h[n] Averaging filter impulse response 0123

7 - 4 Convolution in Both Domains Continuous-time convolution of x(t) and h(t) For each value of t, we compute a different (possibly) infinite integral. Discrete-time definition is the continuous-time definition with integral replaced by summation Linear time-invariant (LTI) system Output signal in time domain is convolution of impulse response and input signal Impulse response uniquely characterizes the LTI system

7 - 5 Convolution Demos Johns Hopkins University Demonstrations Convolution applet to animate convolution of simple signals and hand-sketched signals Convolve two rectangular pulses of same width gives a triangle (see handout E) Some conclusions from the animations Convolution of two causal signals gives a causal result Non-zero duration (called extent) of convolution is sum of extents of two signals being convolved minus one

7 - 6 Fundamental Theorem The Fundamental Theorem of Linear Systems If one inputs a complex sinusoid into an LTI system, then the output will be a complex sinusoid of the same frequency that has been scaled by the frequency response of the LTI system at that frequency Scaling may attenuate the signal and shift it in phase Example in continuous time: see handout G Example in discrete time. Let x[n] = e j  n, H(  ) is the discrete-time Fourier transform of h[n] and is also called the frequency response

7 - 7 Frequency Response For continuous-time LTI system For discrete-time LTI system Note: Identity for cosine input assumes a real- valued impulse response

7 - 8 Example Frequency Response System response to complex exponential e j  n for all possible frequencies  in rad/sample Passes low frequencies, a.k.a. lowpass filter  |H(  )| pp ss  s  p passband stopband   H() H()

7 - 9 Differentiator/Difference Operation ContinuousDiscrete f(t)f(t)y(t)y(t)f[n]f[n]y[n]y[n] We can remove scaling by 1/T s without changing lowpass response

First-Order FIR Filters signal = [ ]; figure(1); stem(signal); averagingFilter = [ ]; average = conv(averagingFilter, signal); figure(2); stem(average); differenceFilter = [ ]; difference = conv(differenceFilter, signal); figure(3); stem(difference); Signal with a spike Output of averaging filter Output of difference filter y[n] = ½ x[n] + ½ x[n-1] y[n] = ½ x[n]  ½ x[n-1] x[n]x[n] n nn

Mandrill Demo (DSP First) First-order difference FIR filter Highpass filter (sharpens input signal) Impulse response is {1, -1} Five-tap discrete-time (scaled) averaging FIR filter with input x[n] and output y[n] Lowpass filter (smooth/blur input signal) Impulse response is {1, 1, 1, 1, 1} n h[n]h[n] First-order difference impulse response

Mandrill Demo (DSP First) DSP First, Ch. 6, Freq. Response of FIR Filters, From lowpass filter to highpass filter original image  blurred image  sharpened/blurred image From highpass to lowpass filter original image  sharpened image  blurred/sharpened image Frequencies that are zeroed out can never be recovered (e.g. DC is zeroed out by highpass filter) Order of two LTI systems in cascade can be switched under the assumption that computations are performed in exact precision

Mandrill Demo (DSP First) Input image is 256 x 256 matrix Each pixel represented by eight-bit number in [0, 255] 0 is black and 255 is white for monitor display Each filter applied along row then column Averaging filter adds five numbers to create output pixel Difference filter subtracts two numbers to create output pixel Full output precision is 16 bits per pixel Demonstration uses double-precision floating-point data and arithmetic (53 bits of mantissa + sign; 11 bits for exponent) No output precision was harmed in making of this demo

Linear Time-Invariant System Any linear time-invariant system (LTI) system, continuous-time or discrete-time, can be uniquely characterized by its Impulse response: response of system to an impulse Frequency response: response of system to a two- sided complex exponential input signal for all possible frequencies Transfer function: Laplace transform (or z-transform) of impulse response Given one of the three, we can find other two provided that they exist