THE ROLE OF LIE BRACKETS IN STABILITY OF LINEAR AND NONLINEAR SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical &

Slides:



Advertisements
Similar presentations
COMMON WEAK LYAPUNOV FUNCTIONS and OBSERVABILITY Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois.
Advertisements

1 STABILITY OF SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign.
SWITCHING ADAPTIVE CONTROL Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign.
NONLINEAR HYBRID CONTROL with LIMITED INFORMATION Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois.
CONTROL with LIMITED INFORMATION Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign.
Ch 7.6: Complex Eigenvalues
OUTPUT – INPUT STABILITY Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign.
INPUT-TO-STATE STABILITY of SWITCHED SYSTEMS Debasish Chatterjee, Linh Vu, Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer.
TOWARDS a UNIFIED FRAMEWORK for NONLINEAR CONTROL with LIMITED INFORMATION Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer.
TOWARDS ROBUST LIE-ALGEBRAIC STABILITY CONDITIONS for SWITCHED LINEAR SYSTEMS 49 th CDC, Atlanta, GA, Dec 2010 Daniel Liberzon Univ. of Illinois, Urbana-Champaign,
1 of 13 STABILIZING a SWITCHED LINEAR SYSTEM by SAMPLED - DATA QUANTIZED FEEDBACK 50 th CDC-ECC, Orlando, FL, Dec 2011, last talk in the program! Daniel.
INTRODUCTION to SWITCHED SYSTEMS ; STABILITY under ARBITRARY SWITCHING
INTRODUCTION to SWITCHED and HYBRID SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at.
IFAC AIRTC, Budapest, October 2000 On the Dynamic Instability of a Class of Switching System Robert Noel Shorten Department of Computer Science National.
NONLINEAR OBSERVABILITY NOTIONS and STABILITY of SWITCHED SYSTEMS CDC ’02 João Hespanha Univ. of California at Santa Barbara Daniel Liberzon Univ. of Illinois.
TOWARDS ROBUST LIE-ALGEBRAIC STABILITY CONDITIONS for SWITCHED LINEAR SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical &
GRADIENT ALGORITHMS for COMMON LYAPUNOV FUNCTIONS Daniel Liberzon Univ. of Illinois at Urbana-Champaign, U.S.A. Roberto Tempo IEIIT-CNR, Politecnico di.
1 of 9 ON ALMOST LYAPUNOV FUNCTIONS Daniel Liberzon University of Illinois, Urbana-Champaign, U.S.A. TexPoint fonts used in EMF. Read the TexPoint manual.
1 Formal Models for Stability Analysis : Verifying Average Dwell Time * Sayan Mitra MIT,CSAIL Research Qualifying Exam 20 th December.
Lecture #13 Stability under slow switching & state-dependent switching João P. Hespanha University of California at Santa Barbara Hybrid Control and Switched.
STABILITY under CONSTRAINED SWITCHING Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign.
1 Stability of Hybrid Automata with Average Dwell Time: An Invariant Approach Daniel Liberzon Coordinated Science Laboratory University of Illinois at.
COMMUTATION RELATIONS and STABILITY of SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of.
1 Stability Analysis of Switched Systems: A Variational Approach Michael Margaliot School of EE-Systems Tel Aviv University Joint work with Daniel Liberzon.
1 Stability Analysis of Continuous- Time Switched Systems: A Variational Approach Michael Margaliot School of EE-Systems Tel Aviv University, Israel Joint.
CONTROL with LIMITED INFORMATION ; SWITCHING ADAPTIVE CONTROL Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ.
A LIE-ALGEBRAIC CONDITION for STABILITY of SWITCHED NONLINEAR SYSTEMS CDC ’04 Michael Margaliot Tel Aviv University, Israel Daniel Liberzon Univ. of Illinois.
1 of 12 COMMUTATORS, ROBUSTNESS, and STABILITY of SWITCHED LINEAR SYSTEMS SIAM Conference on Control & its Applications, Paris, July 2015 Daniel Liberzon.
QUANTIZED CONTROL and GEOMETRIC OPTIMIZATION Francesco Bullo and Daniel Liberzon Coordinated Science Laboratory Univ. of Illinois at Urbana-Champaign U.S.A.
CONTROL of NONLINEAR SYSTEMS with LIMITED INFORMATION Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of.
STABILIZING a NONLINEAR SYSTEM with LIMITED INFORMATION FEEDBACK Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng.,
CONTROL of NONLINEAR SYSTEMS under COMMUNICATION CONSTRAINTS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ.
MEETING THE NEED FOR ROBUSTIFIED NONLINEAR SYSTEM THEORY CONCEPTS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng.,
Stability Analysis of Linear Switched Systems: An Optimal Control Approach 1 Michael Margaliot School of Elec. Eng. Tel Aviv University, Israel Joint work.
CIS 540 Principles of Embedded Computation Spring Instructor: Rajeev Alur
1 Stability Analysis of Linear Switched Systems: An Optimal Control Approach Michael Margaliot School of Elec. Eng. Tel Aviv University, Israel Joint work.
CONTROL with LIMITED INFORMATION Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign.
Algorithms for a large sparse nonlinear eigenvalue problem Yusaku Yamamoto Dept. of Computational Science & Engineering Nagoya University.
TUTORIAL on LOGIC-BASED CONTROL Part I: SWITCHED CONTROL SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng.,
QUANTIZED OUTPUT FEEDBACK CONTROL of NONLINEAR SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of.
OUTPUT – INPUT STABILITY and FEEDBACK STABILIZATION Daniel Liberzon CDC ’03 Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ.
QUANTIZATION and DELAY EFFECTS in NONLINEAR CONTROL SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ.
Lecture #8 Stability and convergence of hybrid systems João P. Hespanha University of California at Santa Barbara Hybrid Control and Switched Systems.
Lecture #11 Stability of switched system: Arbitrary switching João P. Hespanha University of California at Santa Barbara Hybrid Control and Switched Systems.
SWITCHING CONTROL DESIGN Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign.
Daniel Liberzon Coordinated Science Laboratory and
Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
AUTOMATIC CONTROL THEORY II Slovak University of Technology Faculty of Material Science and Technology in Trnava.
Lecture #14 Computational methods to construct multiple Lyapunov functions & Applications João P. Hespanha University of California at Santa Barbara Hybrid.
COMMUTATION RELATIONS and STABILITY of SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of.
OUTPUT-INPUT STABILITY: A NEW VARIANT OF THE MINIMUM-PHASE PROPERTY FOR NONLINEAR SYSTEMS D. Liberzon Univ. of Illinois at Urbana-Champaign, USA A. S.
Feedback Stabilization of Nonlinear Singularly Perturbed Systems MENG Bo JING Yuanwei SHEN Chao College of Information Science and Engineering, Northeastern.
Lecture #12 Controller realizations for stable switching João P. Hespanha University of California at Santa Barbara Hybrid Control and Switched Systems.
STABILIZATION by QUANTIZED FEEDBACK : HYBRID CONTROL APPROACH Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ.
SMALL-GAIN APPROACH to STABILITY ANALYSIS of HYBRID SYSTEMS CDC ’05 Dragan Nešić University of Melbourne, Australia Daniel Liberzon Univ. of Illinois at.
NONLINEAR CONTROL with LIMITED INFORMATION Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at.
STABILITY of SWITCHED SYSTEMS – family of asymptotically stable systems – piecewise constant switching signal Want GUAS w.r.t. want GUES For switched linear.
Lecture #7 Stability and convergence of ODEs João P. Hespanha University of California at Santa Barbara Hybrid Control and Switched Systems NO CLASSES.
Stability Analysis of Positive Linear Switched Systems: A Variational Approach 1 Michael Margaliot School of Elec. Eng. -Systems Tel Aviv University, Israel.
TOWARDS a UNIFIED FRAMEWORK for NONLINEAR CONTROL with LIMITED INFORMATION Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer.
§7-4 Lyapunov Direct Method
Input-to-State Stability for Switched Systems
Autonomous Cyber-Physical Systems: Dynamical Systems
SWITCHED SYSTEMS Switched system: is a family of systems
SWITCHED SYSTEMS Switched system: is a family of systems
Lecture #10 Switched systems
Michael Margaliot School of Elec. Eng. -Systems
SWITCHING CONTROL DESIGN
Guosong Yang1, A. James Schmidt2, and Daniel Liberzon2
On Topological Entropy and Stability of Switched Linear Systems
Presentation transcript:

THE ROLE OF LIE BRACKETS IN STABILITY OF LINEAR AND NONLINEAR SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign Semi-plenary lecture, MTNS, Blacksburg, VA, 7/31/08 1 of 24

THE ROLE OF LIE BRACKETS IN STABILITY OF LINEAR AND NONLINEAR SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

THE ROLE OF LIE BRACKETS IN STABILITY OF LINEAR AND NONLINEAR SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

THE ROLE OF LIE BRACKETS IN STABILITY OF LINEAR AND NONLINEAR SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

THE ROLE OF LIE BRACKETS IN STABILITY OF LINEAR AND NONLINEAR SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

THE ROLE OF LIE BRACKETS IN STABILITY OF LINEAR AND NONLINEAR SWITCHED SYSTEMS Daniel Liberzon Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

SWITCHED vs. HYBRID SYSTEMS Switching can be: State-dependent or time-dependent Autonomous or controlled Further abstraction/relaxation: differential inclusion, measurable switching Details of discrete behavior are “abstracted away” : stabilityProperties of the continuous state Switched system: is a family of systems is a switching signal 2 of 24

STABILITY ISSUE unstable Asymptotic stability of each subsystem is not sufficient for stability 3 of 24

TWO BASIC PROBLEMS Stability for arbitrary switching Stability for constrained switching 4 of 24

TWO BASIC PROBLEMS Stability for arbitrary switching Stability for constrained switching

GLOBAL UNIFORM ASYMPTOTIC STABILITY GUAS is Lyapunov stability plus asymptotic convergence GUES: 5 of 24

COMMUTING STABLE MATRICES => GUES For subsystems – similarly (commuting Hurwitz matrices) 6 of 24

quadratic common Lyapunov function [ Narendra–Balakrishnan ’94 ] COMMUTING STABLE MATRICES => GUES Alternative proof: is a common Lyapunov function 7 of 24

LIE ALGEBRAS and STABILITY Nilpotent means suff. high-order Lie brackets are 0 e.g. is nilpotent if s.t. is solvable if s.t. Lie algebra: Lie bracket: Nilpotent GUES [ Gurvits ’95 ] 8 of 24

SOLVABLE LIE ALGEBRA => GUES Example: quadratic common Lyap fcn diagonal exponentially fast 0 exp fast [ L–Hespanha–Morse ’99 ] Lie’s Theorem: is solvable triangular form 9 of 24

MORE GENERAL LIE ALGEBRAS Levi decomposition: radical (max solvable ideal) There exists one set of stable generators for which gives rise to a GUES switched system, and another which gives an unstable one [ Agrachev–L ’01 ] is compact (purely imaginary eigenvalues) GUES, quadratic common Lyap fcn is not compact not enough info in Lie algebra: 10 of 24

SUMMARY: LINEAR CASE Extension based only on the Lie algebra is not possible Lie algebra w.r.t. Quadratic common Lyapunov function exists in all these cases Assuming GES of all modes, GUES is guaranteed for: commuting subsystems: nilpotent Lie algebras (suff. high-order Lie brackets are 0) e.g. solvable Lie algebras (triangular up to coord. transf.) solvable + compact (purely imaginary eigenvalues) 11 of 24

SWITCHED NONLINEAR SYSTEMS Lie bracket of nonlinear vector fields: Reduces to earlier notion for linear vector fields (modulo the sign) 12 of 24

SWITCHED NONLINEAR SYSTEMS Linearization (Lyapunov’s indirect method) Can prove by trajectory analysis [ Mancilla-Aguilar ’00 ] or common Lyapunov function [ Shim et al. ’98, Vu–L ’05 ] Global results beyond commuting case – ? [Unsolved Problems in Math. Systems and Control Theory] Commuting systems GUAS 13 of 24

SPECIAL CASE globally asymptotically stable Want to show: is GUAS Will show: differential inclusion is GAS 14 of 24

OPTIMAL CONTROL APPROACH Associated control system: where (original switched system ) Worst-case control law [Pyatnitskiy, Rapoport, Boscain, Margaliot] : fix and small enough 15 of 24

MAXIMUM PRINCIPLE is linear in at most 1 switch (unless ) GAS Optimal control: (along optimal trajectory) 16 of 24

SINGULARITY Need: nonzero on ideal generated by (strong extremality) At most 2 switches GAS Know: nonzero on strongly extremal (time-optimal control for auxiliary system in ) constant control (e.g., ) Sussmann ’79: 17 of 24

GENERAL CASE GAS Want: polynomial of degree (proof – by induction on ) bang-bang with switches 18 of 24

THEOREM Suppose: GAS, backward complete, analytic s.t. and Then differential inclusion is GAS, and switched system is GUAS [ Margaliot–L ’06 ] Further work in [ Sharon–Margaliot ’07 ] 19 of 24

REMARKS on LIE-ALGEBRAIC CRITERIA Checkable conditions In terms of the original data Independent of representation Not robust to small perturbations 20 of 24 In any neighborhood of any pair of matrices there exists a pair of matrices generating the entire Lie algebra [ Agrachev–L ’01 ] How to measure closeness to a “nice” Lie algebra?

EXAMPLE 21 of 24 ( discrete time, or cont. time periodic switching: ) Suppose. Fact 1 Stable for dwell time : Fact 2 If then always stable: This generalizes Fact 1 (didn’t need ) and Fact 2 ( ) Switching between and Schur Fact 3 Stable if where is small enough s.t. When we have where

EXAMPLE 21 of 24 ( discrete time, or cont. time periodic switching: ) Suppose. Fact 1 Stable for dwell time : Fact 2 If then always stable: Switching between and Schur When we have where

MORE GENERAL FORMULATION 22 of 24 Assume switching period :

MORE GENERAL FORMULATION 22 of 24 Find smallest s.t. Assume switching period

MORE GENERAL FORMULATION 22 of 24 Assume switching period Intuitively, captures: how far and are from commuting ( ) how big is compared to ( ), define byFind smallest s.t.

MORE GENERAL FORMULATION 22 of 24 Stability condition: where already discussed: (“elementary shuffling”) Assume switching period, define byFind smallest s.t.

SOME OPEN ISSUES 23 of 24 Relation between and Lie brackets of and general formula seems to be lacking

SOME OPEN ISSUES 23 of 24 Relation between and Lie brackets of and Suppose but Elementary shuffling:, not nec. close to but commutes with and Smallness of higher-order Lie brackets Example:

SOME OPEN ISSUES Relation between and Lie brackets of and Suppose but Elementary shuffling:, not nec. close to but commutes with and This shows stability for Example: In general, for can define by 23 of 24 Smallness of higher-order Lie brackets ( Gurvits: true for any )

SOME OPEN ISSUES Relation between and Lie brackets of and 24 of 24 Smallness of higher-order Lie brackets More than 2 subsystems can still define but relation with Lie brackets less clear Optimal way to shuffle especially when is not a multiple of Thank you for your attention!