Barisan dan Deret Geometri By: Jeffrey Bivin Lake Zurich High School Last Updated: October 11, 2005.

Slides:



Advertisements
Similar presentations
Trig (Polar) Form of a Complex Number
Advertisements

Quadratic Applications Vertical Motion & Profit / Income By: Jeffrey Bivin Lake Zurich High School
By: Jeffrey Bivin Lake Zurich High School Last Updated: October 11, 2005.
Solving Quadratics by Completing the Square & Quadratic Formula
Barisan dan Deret Aritmetika By: Jeffrey Bivin Lake Zurich High School Last Updated: April 28, 2006.
Jeff Bivin -- LZHS Right Triangle Trigonometry By: Jeffrey Bivin Lake Zurich High School Last Updated: December 1, 2010.
Two lines and a Transversal Jeff Bivin & Katie Nerroth Lake Zurich High School Last Updated: November 18, 2005.
Determinants of 2 x 2 and 3 x 3 Matrices By: Jeffrey Bivin Lake Zurich High School
Jeff Bivin -- LZHS Vector Applications By: Jeffrey Bivin Lake Zurich High School Last Updated: February 14, 2011.
Graphing Parabolas Using the Vertex Axis of Symmetry & y-Intercept By: Jeffrey Bivin Lake Zurich High School Last Updated: October.
Jeff Bivin -- LZHS Graphing Rational Functions Jeffrey Bivin Lake Zurich High School Last Updated: February 18, 2008.
By: Jeffrey Bivin Lake Zurich High School Last Updated: October 30, 2006.
Geometric Sequences and Series. Arithmetic Sequences ADD To get next term Geometric Sequences MULTIPLY To get next term Arithmetic Series Sum of Terms.
Jeff Bivin -- LZHS Arithmetic Sequences Last UpdatedApril 4, 2012.
Arithmetic Sequences & Series Last Updated: October 11, 2005.
Recursive Functions, Iterates, and Finite Differences By: Jeffrey Bivin Lake Zurich High School Last Updated: May 21, 2008.
Exponential and Logarithmic Functions By: Jeffrey Bivin Lake Zurich High School Last Updated: January 30, 2008.
MATRICES Jeffrey Bivin Lake Zurich High School Last Updated: October 12, 2005.
THE UNIT CIRCLE Initially Developed by LZHS Advanced Math Team (Keith Bullion, Katie Nerroth, Bryan Stortz) Edited and Modified by Jeff Bivin Lake Zurich.
Logarithmic Properties & Functions By: Jeffrey Bivin Lake Zurich High School Last Updated: January 30, 2008.
Graphs of Polynomial Functions
Using Spreadsheets for Linear Programming with The Simplex Method A sample problem By: Jeffrey Bivin Lake Zurich High School Last Updated: October 11,
Exponential and Logarithmic Functions Section 5.4.
Relations and Functions By: Jeffrey Bivin Lake Zurich High School Last Updated: November 14, 2007.
Graphing Lines slope & y-intercept & x- & y- intercepts Jeffrey Bivin Lake Zurich High School Last Updated: September 6, 2007.
Warming Up. 13.5: Sums of Infinite Series Pre-Calculus.
9.1 Part 1 Sequences and Series.
Systems of Equations Gaussian Elimination & Row Reduced Echelon Form by Jeffrey Bivin Lake Zurich High School Last Updated: October.
Right Triangle Trigonometry
Jeff Bivin -- LZHS Last Updated: April 7, 2011 By: Jeffrey Bivin Lake Zurich High School
Jeff Bivin -- LZHS Last Updated: March 11, 2008 Section 10.2.
Jeff Bivin -- LZHS Quadratic Equations. Jeff Bivin -- LZHS Convert to Standard Form f(x) = 5x x + 46 f(x) = 5(x 2 - 8x + (-4) 2 ) f(x)
Binomial Expansion And More
By: Jeffrey Bivin Lake Zurich High School
Exponential and Logarithmic Functions By: Jeffrey Bivin Lake Zurich High School Last Updated: January 2, 2006.
Matrix Working with Scalars by Jeffrey Bivin Lake Zurich High School Last Updated: October 11, 2005.
Rational Expon ents and Radicals By: Jeffrey Bivin Lake Zurich High School Last Updated: December 11, 2007.
THE UNIT CIRCLE Day , (1, 0) (-1, 0) (0, 1) (0, -1)
Matrix Multiplication. Row 1 x Column X 25 = Jeff Bivin -- LZHS.
Inverses By: Jeffrey Bivin Lake Zurich High School Last Updated: November 17, 2005.
Lake Zurich High School
Section 12.3 – Infinite Series. 1, 4, 7, 10, 13, …. Infinite Arithmetic No Sum 3, 7, 11, …, 51 Finite Arithmetic 1, 2, 4, …, 64 Finite Geometric 1, 2,
Infinite Series Lesson 8.5. Infinite series To find limits, we sometimes use partial sums. If Then In other words, try to find a finite limit to an infinite.
Matrix Multiplication Example 1 Original author: Jeffrey Bivin, Lake Zurich High School.
MATHPOWER TM 12, WESTERN EDITION Chapter 6 Sequences and Series.
Lake Zurich High School
Sum it up Jeff Bivin -- LZHS.
Matrix Multiplication
Solving Quadratics by Completing the Square & Quadratic Formula
By: Jeffrey Bivin Lake Zurich High School
Geometric Sequences and Series
Infinite Sequences and Series
Rational Exponents and Radicals
Lake Zurich High School
By: Jeffrey Bivin Lake Zurich High School
Lake Zurich High School
Lake Zurich High School
Jeffrey Bivin Lake Zurich High School
64 – Infinite Series Calculator Required
Two lines and a Transversal
Hyperbola Last Updated: October 11, 2005 Jeff Bivin -- LZHS.
Ellipse Last Updated: October 11, 2005.
Matrix Multiplication
Lake Zurich High School
65 – Infinite Series Calculator Required
Lake Zurich High School
Bell Quiz 3 The quantity is called the __________ of a quadratic equation. If it’s ___________ it has no real solution. Solve the equation.
Lake Zurich High School
Jeffrey Bivin Lake Zurich High School
Presentation transcript:

Barisan dan Deret Geometri By: Jeffrey Bivin Lake Zurich High School Last Updated: October 11, 2005

Barisan Geometri 1, 2, 4, 8, 16, 32, … 2 n-1, … 3, 9, 27, 81, 243, … 3 n,... 81, 54, 36, 24, 16, …,... Jeff Bivin -- LZHS

Barisan Geometri Suku Ke-n U n = a·r (n-1) Jeff Bivin -- LZHS

Menentukan Rumus Barisan Geometri Suku Pertama 2 Rasio 3 u n = a·r (n-1) u n = 2(3) (n-1) Jeff Bivin -- LZHS

Tentukan rumus barisan geometri U n Suku Pertama 128 Rasio (1/2) U n = a·r (n-1) Jeff Bivin -- LZHS

Tentukan rumus barisan geometri suku ke- n atau U n Suku pertama 64 Rasio (3/2) U n = a·r (n-1) Jeff Bivin -- LZHS

Menentukan Nilai Suku Ke-10 3, 6, 12, 24, 48,... a = 3 r = 2 n = 10 U n = a·r (n-1) U 10 = 3·(2) 10-1 U 10 = 3·(2) 9 U 10 = 3·(512) U 10 = 1536 Jeff Bivin -- LZHS

Menentukan Suku Ke-8 2, -10, 50, -250, 1250,... a= 2 r = -5 n = 8 U n = a·r (n-1) U n = 2·(-5) 8-1 U n = 2·(-5) 7 U n = 2·(-78125) U n = Jeff Bivin -- LZHS

Menjumlahkan Deret Geometri Jeff Bivin -- LZHS

a = 1 r = 3 n = 6 Jeff Bivin -- LZHS

– a = 4 r = -2 n = 7 Jeff Bivin -- LZHS

Alternative Sum Formula Kita tahu bahwa: Dikalikan r: Sederhanakan: Substitusikan: Jeff Bivin -- LZHS

Tentukan jumlah barisan geometri Jeff Bivin -- LZHS

Hitunglah a = 2 r = 2 n = 10 U n = 1024 = …+1024 Jeff Bivin -- LZHS

Hitunglah a = 3 r = 2 n = 8 U n = 384 = …+ 384 Jeff Bivin -- LZHS

Rangkuman -- Geometri Rumus Suku-n Jumlah Suku-n U n = a·r (n-1) Jeff Bivin -- LZHS

Deret Geometri Tak Hingga Jeff Bivin -- LZHS

The Magic Flea (magnified for easier viewing) There is no flea like a Magic Flea Jeff Bivin -- LZHS

The Magic Flea (magnified for easier viewing) Jeff Bivin -- LZHS

Jumlah Deret Geometri Tak Hingga Jeff Bivin -- LZHS

Ingat --The Magic Flea Jeff Bivin -- LZHS

A Bouncing Ball rebounds ½ of the distance from which it fell -- What is the total vertical distance that the ball traveled before coming to rest if it fell from the top of a 128 feet tall building? Jeff Bivin -- LZHS

A Bouncing Ball Lintasan Turun = … Jeff Bivin -- LZHS

A Bouncing Ball Lintasan Naik= … Jeff Bivin -- LZHS

A Bouncing Ball L Naik = … = 128 L Turun = … = 256 TOTAL = 384 ft. Jeff Bivin -- LZHS

A Bouncing Ball rebounds 3/5 of the distance from which it fell -- What is the total vertical distance that the ball traveled before coming to rest if it fell from the top of a 625 feet tall building? Jeff Bivin -- LZHS

A Bouncing Ball L Turun= … Jeff Bivin -- LZHS

A Bouncing Ball L Naik= … Jeff Bivin -- LZHS

A Bouncing Ball L Naik = … = L Turun = … = TOTAL = 2500 ft. Jeff Bivin -- LZHS

Menentukan jumlah tak hingga Jeff Bivin -- LZHS

Pecahan – Desimal Tak hingga Jeff Bivin -- LZHS

Mari kita coba kembali Jeff Bivin -- LZHS

Keunikan subtract Jeff Bivin -- LZHS

OK now a series Jeff Bivin -- LZHS

That’s All Folks.9 = 1 Jeff Bivin -- LZHS