Calcium Channel Blocking Drugs
Chemical TypeChemical NamesBrand Names PhenylalkylaminesverapamilCalan, Calna SR, Isoptin SR, Verelan BenzothiazepinesdiltiazemCardizem CD, Dilacor XR 1,4-DihydropyridinesNifedipine nicardipine isradipine felodipine amlodipine Adalat CC, Procardia XL Cardene DynaCirc Plendil Norvasc Three Classes of CCBs
Prima generazioneSeconda generazioneTerza generazione PhenylalkylaminesVi appartengono formulazioni a lento rilascio dei CCBs di prima generazione Altamente lipofile. Benedipina lacidipina, lecarnidipina Benzothiazepines 1,4-Dihydropyridines nicardipine isradipine felodipine amlodipine Three Classes of CCBs
Canali del calcio: VOC (Voltage operated channels) ROC (Receptor operated channels SMOC (Second Messanger operated channels)
The 1C subunit of the L-type Ca 2+ channel is the pore-forming subunit D N V N Domini Segmenti
Increase the time that Ca 2+ channels are closed/inactivated Relaxation of the arterial smooth muscle but not much effect on venous smooth muscle Significant reduction in afterload but not preload CCBs – Mechanisms of Action
Why Do CCBs Act Selectively on Cardiac and Vascular Muscle?
N-type and P-type Ca 2+ channels mediate neurotransmitter release in neurons postsynaptic cell Ca 2+
Cardiac cells rely on L-type Ca 2+ channels for contraction and for the upstroke of the AP in slow response cells Contractile Cells (atria, ventricle) L-Type Ca 2 + Slow Response Cells (SA node, AV node) L-Type Ca 2+
Vascular smooth muscle relies on Ca 2+ influx through L-type Ca 2+ channels for contraction (graded, Ca 2+ dependent contraction) L-Type Ca 2+
Differential effects of different CCBs on CV cells AV SN AV SN Potential reflex increase in HR, myocardial contractility and O 2 demand Coronary VD Dihydropyridines: Selective vasodilatorsNon -dihydropyridines: equipotent for cardiac tissue and vasculature Heart rate moderating Peripheral and coronary vasodilation Reduced inotropism Peripheral vasodilation
Differential states of L-type calcium channel restingactive inactive
The different binding sites of CCBs result in differing pharmacological effects Voltage-dependent binding (targets smooth muscle) Use-dependent binding (targets cardiac cells) Cell membrane 11 out in mV 22 Diltiazem Verapamil 11 11 out in 22 11 Nifedipine Cell membrane mV
Angina pectoris Hypertension Treatment of supraventricular arrhythmias - Atrial Flutter - Atrial Fibrillation - Paroxysmal SVT Widespread use of CCBs
Calcium Channel Blockers Mechanisms of Action
EffectVerapamilDiltiazemNifedipine Peripheral vasodilatation Coronary vasodilatation Preload000/ Afterload Contractility 0/ / */ * Heart rate 0/ /0 AV conduction 0 Hemodynamic Effects of CCBs
Nimodipine and cerebral hemorrhage Hemicranias (?) Multi-drug resistance (MDR ) Additional use of CCBs
Agent Oral Absorption (%) Bioavail- Ability (%) Protein Bound (%) Elimination Half-Life (h) Verapamil> * Diltiazem> Nifedipine> Nicardipine >952-4 Isradipine > >958-9 Felodipine > Amlodipine > CCBs: Pharmacokinetics
DiltiazemVerapamilDihydropyridines Overall0-3%10-14%9-39% Hypotension Headaches0++++ Peripheral Edema Constipation0++0 CHF (Worsen)0+0 AV block+++0 Caution w/beta blockers +++0 Comparative Adverse Effects
AgentDrug Mechanism Pharmaco- kinetics effect Clinical effects Verapamil Digoxin Clearance PC Digoxin tox. VerapamilTerfenedine CYP3A PC > QT DiltiazemCyclosporin CYP3A PC Renal tox. Diltiazem Tacrolimus CYP3A PC Renal tox. Verapamilß-blockers PC Toxicity Nifedipine Riphampicin Clearance PC < CCBs effect AmlodipineTeophilline Clearance PC Toxicity CCBs: Pharmacokinetics interaction (CYP 3A and Glycoprotein-P inhibition
ContraindicationVerapamilNifedipineDiltiazem Hypotension++++ Sinus bradycardia +0+ AV conduction defects ++0 Severe cardiac failure ++++ Contradications for CCBs
Meccanismo d’azione dei nitroderivati Glutatione S-transferasi Glutatione nitrato organico reduttasi Polialcoli esterificati con gli acidi nitrico e nitroso
CCBs Act Selectively on Cardiovascular Tissues Neurons rely on N-and P-type Ca 2+ channels Skeletal muscle relies primarily on [Ca] i Cardiac muscle requires Ca 2+ influx through L-type Ca 2+ channels - contraction (fast response cells) - upstroke of AP (slow response cells) Vascular smooth muscle requires Ca 2+ influx through L-type Ca 2+ channels for contraction
Myofibril Plasma membrane Transverse tubule Terminal cisterna of SR Tubules of SR Triad T SR Skeletal muscle relies on intracellular Ca 2+ for contraction
Calcium Channel Blockers Side Effects PalpitationsHeadache Ankle edema Gingival hyperplasia
heart rate blood pressure anginal symptoms signs of CHF adverse effects CCBs - Monitoring