TM 732 Markov Chains. First Passage Time Consider (s,S) inventory system: first passage from 3 to 1 = 2 weeks recurrence time (3 to 3) = 5 weeks.

Slides:



Advertisements
Similar presentations
Managing Inventory and Food Costs Presented by: Kristin Palmer, Program Manager Gretta Robert, Supply Chain Coordinator.
Advertisements

?????????? ? ? ? ? ? ? ? ? ? ????????? ????????? ????????? ????????? ????????? ????????? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ?? ?? TM.
Review of Ch. 3—Matrices end of section 3.8 This material is a prereq for the second half of ch. 8 on relations.
CS433 Modeling and Simulation Lecture 06 – Part 03 Discrete Markov Chains Dr. Anis Koubâa 12 Apr 2009 Al-Imam Mohammad Ibn Saud University.
Markov Chains 1.
1 Markov Chains (covered in Sections 1.1, 1.6, 6.3, and 9.4)
Topics Review of DTMC Classification of states Economic analysis
Markov Regime Switching Models Generalisation of the simple dummy variables approach Allow regimes (called states) to occur several periods over time In.
Solutions Markov Chains 1
G12: Management Science Markov Chains.
Chapter 17 Markov Chains.
Markov Processes MBAP 6100 & EMEN 5600 Survey of Operations Research Professor Stephen Lawrence Leeds School of Business University of Colorado Boulder,
Markov Chain Part 2 多媒體系統研究群 指導老師:林朝興 博士 學生:鄭義繼. Outline Review Classification of States of a Markov Chain First passage times Absorbing States.
Continuous Time Markov Chains and Basic Queueing Theory
Tutorial 8 Markov Chains. 2  Consider a sequence of random variables X 0, X 1, …, and the set of possible values of these random variables is {0, 1,
INDR 343 Problem Session
048866: Packet Switch Architectures Dr. Isaac Keslassy Electrical Engineering, Technion Review.
The Gibbs sampler Suppose f is a function from S d to S. We generate a Markov chain by consecutively drawing from (called the full conditionals). The n’th.
Algorithms All pairs shortest path
Markov Chains Chapter 16.
11-1 Matrix-chain Multiplication Suppose we have a sequence or chain A 1, A 2, …, A n of n matrices to be multiplied –That is, we want to compute the product.
Chapter 3 Basic Costing. Inventory is also called stock What might the inventory for the following organisations be? What might the inventory for the.
Problems 10/3 1. Ehrenfast’s diffusion model:. Problems, cont. 2. Discrete uniform on {0,...,n}
RECURSIVE PATTERNS WRITE A START VALUE… THEN WRITE THE PATTERN USING THE WORDS NOW AND NEXT: NEXT = NOW _________.
Introduction to Numerical Analysis I MATH/CMPSC 455 LU Factorization.
Supply Chain Metrics That Matter A Closer Look at J&J September 24, 2015.
Decision Making in Robots and Autonomous Agents Decision Making in Robots and Autonomous Agents The Markov Decision Process (MDP) model Subramanian Ramamoorthy.
Solutions Markov Chains 2 3) Given the following one-step transition matrix of a Markov chain, determine the classes of the Markov chain and whether they.
Markov Chains X(t) is a Markov Process if, for arbitrary times t1 < t2 < < tk < tk+1 If X(t) is discrete-valued If X(t) is continuous-valued i.e.
 { X n : n =0, 1, 2,...} is a discrete time stochastic process Markov Chains.
Chapter 3 : Problems 7, 11, 14 Chapter 4 : Problems 5, 6, 14 Due date : Monday, March 15, 2004 Assignment 3.
WEEK 1 You have 10 seconds to name…
Discrete Time Markov Chains
Supply Chain Insights LLC Copyright © 2015, p. 1 Performance and Improvement.
Algorithms for the Maximum Subarray Problem Based on Matrix Multiplication Authours : Hisao Tamaki & Takeshi Tokuyama Speaker : Rung-Ren Lin.
Lecture 25 Undecidability Topics: Recursively Enumerable Languages Recursive languages The halting problem Post Correspondence Problem Problem reductions.
CP3110 – Assignment 2 Bramby’s Bakery Supply chain management software.
11. Markov Chains (MCs) 2 Courtesy of J. Bard, L. Page, and J. Heyl.
Markov Processes What is a Markov Process?
Problems Markov Chains 1 1) Given the following one-step transition matrices of a Markov chain, determine the classes of the Markov chain and whether they.
1 Introduction to Stochastic Models GSLM Outline  transient behavior  first passage time  absorption probability  limiting distribution 
Operations Research.  Operations Research (OR) aims to having the optimization solution for some administrative problems, such as transportation, decision-making,
Chapter 9: Markov Processes
Let E denote some event. Define a random variable X by Computing probabilities by conditioning.
Problems Markov Chains ) Given the following one-step transition matrices of a Markov chain, determine the classes of the Markov chain and whether.
BSHS 342 Week 3 Learning Team Rite of Passage Paper Check this A+ tutorial guideline at 3-Learning-Team-Rite-of-Passage-Paper.
BUSINESS HIGH SCHOOL-RECORD KEEPING
,..,_ -, =.. t :: ;... t---aM 0 d -...c­ " ss ''- !j!j ! )
IENG 362 Markov Chains.
Solutions Markov Chains 1
IENG 362 Markov Chains.
Discrete-time markov chain (continuation)
________________________________________________________________
IENG 362 Markov Chains.
IENG 362 Markov Chains.
IENG 362 Markov Chains.
Chapman-Kolmogorov Equations
- I, n i i. JJ- l__!l__!
10:00.
Problem Markov Chains 1 A manufacturer has one key machine at the core of its production process. Because of heavy use, the machine.
Solutions Markov Chains 1
\ - \ ''\ '' "1iJJJ ff l1flJI I I.
,;, " : _... \,, "" \..;... "" '- \,.. \,,...,..... \... '- - '"\'"\ \ l,.,....J '-... '- \.\.
Problem Markov Chains 1 A manufacturer has one key machine at the core of its production process. Because of heavy use, the machine.
I ;J\;J\ _\_\ -
IENG 362 Markov Chains.
Design a TM that decides the language
EXP file structure.
Discrete-time markov chain (continuation)
Solutions Markov Chains 6
Presentation transcript:

TM 732 Markov Chains

First Passage Time Consider (s,S) inventory system: first passage from 3 to 1 = 2 weeks recurrence time (3 to 3) = 5 weeks

First Passage Time Consider (s,S) inventory system: first passage from 3 to 1 = 2 weeks Let fPfirstpassagetimeitojn ij n () {} 

Recursion fPXjXi P () {|} 1 10  

Recursion fPXjXi P () {|} 1 10   fPXjXi () {|} 2 20 

Recursion fPXjXi P () {|} 1 10   fPXjXi () {|} 2 20  PXjXkPXkXi kj {|}{|} 2110   

Recursion fPXjXi P () {|} 1 10   fPXjXi PXjXkPXkXi PXjXkPXkXi PXjXjPXjXi kj k () {|} {|}{|} {|}{|} {|}{|}       

Recursion fPXjXi P () {|} 1 10  

Recursion f P ()1  f ()2  PfP jj ()()21  fPfPfP fP ij n n jj n ijjj n ij n jj ()()()()()() ()()...    

Expected First Passage Let  ij ectedfirstpassagetime fromstateitostatej  exp

Expected First Passage Proposition:  ijikkj kj P    1  ij n n jistransient nfjisrecurrent     ,, () 1 {

Example; Inventory  ijikkj kj P    1

Example; Inventory   PPP  ijikkj kj P    1

Example; Inventory   PPP   PPP  ijikkj kj P    1

Example; Inventory   PPP   PPP   PPP  ijikkj kj P    1

Example; Inventory  ijikkj kj P    1 P 

Example; Inventory  ...  ijikkj kj P    1 P 

Example; Inventory  ...  ...  ijikkj kj P    1 P 

Example; Inventory  ...  ...  ...  ijikkj kj P    1 P 

Example; Inventory  ...  ..  .  .   (.)    ..wks

Example; Inventory   (1.58) 0368  ..  ...  ..  10  1.58

Example; Inventory   (1.58) 0368  ..  ...  ..  10  1.58  (.).(.) 

Example; Inventory   (1.58) 0368  ..  ...  ..  10  1.58   (.).(.).(.) (.).      wks

Example; Inventory  ...    10  1.58   (1.58) 0368 (2.51)0368  ...

Example; Inventory  ...    10  1.58   (1.58) 0368 (2.51)0368  ...     .(.).(.)..wks

Example; Inventory      10  weeks to stock out

Example; Inventory Find:  00

Example; Inventory Find:  00     PPP.(.).(.).(.).

Example; Inventory Find:  00     PPP.(.).(.).(.).   ..