TM 732 Markov Chains
First Passage Time Consider (s,S) inventory system: first passage from 3 to 1 = 2 weeks recurrence time (3 to 3) = 5 weeks
First Passage Time Consider (s,S) inventory system: first passage from 3 to 1 = 2 weeks Let fPfirstpassagetimeitojn ij n () {}
Recursion fPXjXi P () {|} 1 10
Recursion fPXjXi P () {|} 1 10 fPXjXi () {|} 2 20
Recursion fPXjXi P () {|} 1 10 fPXjXi () {|} 2 20 PXjXkPXkXi kj {|}{|} 2110
Recursion fPXjXi P () {|} 1 10 fPXjXi PXjXkPXkXi PXjXkPXkXi PXjXjPXjXi kj k () {|} {|}{|} {|}{|} {|}{|}
Recursion fPXjXi P () {|} 1 10
Recursion f P ()1 f ()2 PfP jj ()()21 fPfPfP fP ij n n jj n ijjj n ij n jj ()()()()()() ()()...
Expected First Passage Let ij ectedfirstpassagetime fromstateitostatej exp
Expected First Passage Proposition: ijikkj kj P 1 ij n n jistransient nfjisrecurrent ,, () 1 {
Example; Inventory ijikkj kj P 1
Example; Inventory PPP ijikkj kj P 1
Example; Inventory PPP PPP ijikkj kj P 1
Example; Inventory PPP PPP PPP ijikkj kj P 1
Example; Inventory ijikkj kj P 1 P
Example; Inventory ... ijikkj kj P 1 P
Example; Inventory ... ... ijikkj kj P 1 P
Example; Inventory ... ... ... ijikkj kj P 1 P
Example; Inventory ... .. . . (.) ..wks
Example; Inventory (1.58) 0368 .. ... .. 10 1.58
Example; Inventory (1.58) 0368 .. ... .. 10 1.58 (.).(.)
Example; Inventory (1.58) 0368 .. ... .. 10 1.58 (.).(.).(.) (.). wks
Example; Inventory ... 10 1.58 (1.58) 0368 (2.51)0368 ...
Example; Inventory ... 10 1.58 (1.58) 0368 (2.51)0368 ... .(.).(.)..wks
Example; Inventory 10 weeks to stock out
Example; Inventory Find: 00
Example; Inventory Find: 00 PPP.(.).(.).(.).
Example; Inventory Find: 00 PPP.(.).(.).(.). ..