Ponza 05 June 2008 Status report on       analysis F. Ambrosino T. Capussela F. Perfetto Status report on    analysis Frascati 29.

Slides:



Advertisements
Similar presentations
Introduction Analysis Results Conclusions Frascati 12 March 2008 Status of analysis F. Ambrosino T. Capussela F. Perfetto Status of analysis.
Advertisements

Frascati 14 May 2008 Status of analysis F. Ambrosino T. Capussela F. Perfetto Status of analysis.
 (1385) ANALYSIS STATUS Enrico Fragiacomo, Massimo Venaruzzo INFN and University Trieste Resonances meeting – CERN – 04/03/2011.
Recent Results on Radiative Kaon decays from NA48 and NA48/2. Silvia Goy López (for the NA48 and NA48/2 collaborations) Universitá degli Studi di Torino.
KLOE GM Capri May 2003 K charged status report DE/Dx development vs PiD (next talk by E.De Lucia) →K e3 studies: initial design of efficiency measurement.
Status of the  ee analysis Mauro Raggi, LNF INFN 29 th August 2013 NA48/2 rare decay session NA62 Collaboration meeting Liverpool.
Biagio Di Micco17/07/ Radiative Phi Decays Meeting 1  Status of the work Biagio Di Micco Università degli Studi di Roma 3.
TRACK DICTIONARY (UPDATE) RESOLUTION, EFFICIENCY AND L – R AMBIGUITY SOLUTION Claudio Chiri MEG meeting, 21 Jan 2004.
14 Sept 2004 D.Dedovich Tau041 Measurement of Tau hadronic branching ratios in DELPHI experiment at LEP Dima Dedovich (Dubna) DELPHI Collaboration E.Phys.J.
Measurement of the absolute BR(K  +  -  + ) : an update Patrizia de Simone KLOE Kaon meeting – 21 May 2009.
CHARM 2007, Cornell University, Aug. 5-8, 20071Steven Blusk, Syracuse University D Leptonic Decays near Production Threshold Steven Blusk Syracuse University.
Analysis work by: Rachid Ayad Sheldon Stone Jianchun Wang CBX note available: /homes/cleo/sls/ds4pi.ps Status of B  D  (4  )   analysis Jianchun.
Measurement of the Branching fraction B( B  D* l ) C. Borean, G. Della Ricca G. De Nardo, D. Monorchio M. Rotondo Riunione Gruppo I – Napoli 19 Dicembre.
F. AmbrosinoEuridice Midterm Meeting LNF 11/02/05 1 F.Ambrosino Università e Sezione INFN, Napoli for the KLOE collaboration Study of  Dalitz plot.
Biagio Di Micco13/02/ Radiative Phi Decays Meeting 1  Biagio Di Micco Università degli Studi di Roma III results.
The Hadronic Cross Section Measurement at KLOE Marco Incagli - INFN Pisa on behalf of the KLOE collaboration EPS (July 17th-23rd 2003) in Aachen, Germany.
Outline: (1) The data sample (2) Some news on the analysis method (3) Efficiency revised (4) Background revised (5) Data: spectrum + “phi-curve”
 Candidate events are selected by reconstructing a D, called a tag, in several hadronic modes  Then we reconstruct the semileptonic decay in the system.
Irakli Chakaberia Final Examination April 28, 2014.
Study of the decay   f 0 (980)    +  -  C.Bini, S.Ventura, KLOE Memo /2004 (upd. 06/2005) C.Bini, KLOE Memo /2005 (upd. 06/2005)
Kalanand Mishra April 27, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 Giampiero Mancinelli,
E. De LuciaNeutral and Charged Kaon Meeting – 7 May 2007 Updates on BR(K +  π + π 0 ) E. De Lucia.
K charged meeting 10/11/03 K tracking efficiency & geometrical acceptance :  K (p K,  K )  We use the tag in the handle emisphere to have in the signal.
Measurement of b-tagging Fake rates in Atlas Data M. Saleem * In collaboration with Alexandre Khanov** F. Raztidinova**, P.Skubic * *University of Oklahoma,
   (Episodio II). Signal/Background Reaction:             0   e  e        0 e  e   0 X-section.
 0  5  Outline Event selection & analysis Background rejection Efficiencies Mass spectrum Comparison data-MC Branching ratio evaluation Systematics.
1 Top and Tau Measurements Tim Barklow (SLAC) Oct 02, 2009.
M. Muniruzzaman University of California Riverside For PHENIX Collaboration Reconstruction of  Mesons in K + K - Channel for Au-Au Collisions at  s NN.
Preliminary results for the BR(K S  M. Martini and S. Miscetti.
On quasi-two-body components of (for 250fb -1 ) (for 250fb -1 ) J.Brodzicka, H.Palka INP Krakow DC Meeting May 16, 2005 B +  D 0 D 0 K + B +  D 0 D 0.
Dynamics of  →       F. Ambrosino T. Capussela F. Perfetto.
Resonances in decay Resonances in decay (for 400fb -1 ) (for 400fb -1 )BAM February 27th, 2006 J.Brodzicka, H.Palka INP Kraków J.Brodzicka, H.Palka INP.
Preliminary Measurement of the Ke3 Form Factor f + (t) M. Antonelli, M. Dreucci, C. Gatti Introduction: Form Factor Parametrization Fitting Function and.
Mitchell Naisbit University of Manchester A study of the decay using the BaBar detector Mitchell Naisbit – Elba.
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
Measurement of the branching ratio of the K +     decay Update E. De Lucia, R. Versaci.
04/06/07I.Larin pi0 systematic error 1  0 error budget Completed items (review) Updated and new items (not reported yet) Items to be completed.
1 Measurement of the Mass of the Top Quark in Dilepton Channels at DØ Jeff Temple University of Arizona for the DØ collaboration DPF 2006.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
4/12/05 -Xiaojian Zhang, 1 UIUC paper review Introduction to Bc Event selection The blind analysis The final result The systematic error.
A High Statistics Study of the Decay M. Fujikawa for the Belle Collaboration Outline 1.Introduction 2.Experiment Belle detector 3.Analysis Event selection.
06/2006I.Larin PrimEx Collaboration meeting  0 analysis.
The K L   0  0 decays in KLOE Introduction  pairing Discriminant variables K L   0  0 counting : 3,4,5  ’s samples Control samples for efficiencies.
D. LeoneNovosibirsk, , 2006Pion Form KLOE Debora Leone (IEKP – Universität Karlsruhe) for the KLOE collaboration International Workshop.
Kalanand Mishra June 29, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 Giampiero Mancinelli,
Paolo Massarotti Kaon meeting March 2007  ±  X    X  Time measurement use neutral vertex only in order to obtain a completely independent.
M. Martemianov, ITEP, October 2003 Analysis of ratio BR(K     0 )/BR(K    ) M. Martemianov V. Kulikov Motivation Selection and cuts Trigger efficiency.
Paolo Massarotti Charged Kaon Meeting 4 may 2006 Charged kaon lifetime P. Massarotti.
Charm Mixing and D Dalitz analysis at BESIII SUN Shengsen Institute of High Energy Physics, Beijing (for BESIII Collaboration) 37 th International Conference.
1 D *+ production Alexandr Kozlinskiy Thomas Bauer Vanya Belyaev
LNF 12/12/06 1 F.Ambrosino-T. Capussela-F.Perfetto Update on        Dalitz plot slope Where we started from A big surprise Systematic checks.
Status of the measurement of K L lifetime - Data sample (old): ~ 440 pb -1 ( ) - MC sample: ~125 pb -1 ( mk0 stream ) Selection: standard tag (|
Investigation on CDF Top Physics Group Ye Li Graduate Student UW - Madison.
INFN - PadovaBeauty Measurements in pp with the Central Detector 1 Beauty Measurements in p-p with the Central Detector F. Antinori, C. Bombonati, A. Dainese,
Biagio Di Micco  mass measurement Systematics on   mass measurement Biagio Di Micco.
ICHEP 2002, Amsterdam Marta Calvi - Study of Spectral Moments… 1 Study of Spectral Moments in Semileptonic b Decays with the DELPHI Detector at LEP Marta.
Biagio Di Micco  mass measurement   mass measurement blessing of the final result Biagio Di Micco.
analisys: Systematics checks
KLOE results on  decays
Observation of a “cusp” in the decay K±  p±pp
Study of the
p0 life time analysis: general method, updates and preliminary result
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
I.Larin, PrimEx Analysis meeting
Reddy Pratap Gandrajula (University of Iowa) on behalf of CMS
Report on p0 decay width: analysis updates
Energy Calibration with Compton Data
Results on 30 and  + - 0 from KLOE
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Presentation transcript:

Ponza 05 June 2008 Status report on       analysis F. Ambrosino T. Capussela F. Perfetto Status report on    analysis Frascati 29 September 2008

Outline Now Future Conclusions Ponza 05 June 2008 Outline Where we stand now :  Improved the selection procedure  Tested the fit procedure  Semplified the analysis Which are the future plans :  Understand the slope in the wrong pairing (w.p.)  Select the approach in which to give the result  Finally to publish!!!! Frascati 29 September 2008

OLD approach : 7 and only 7 pnc with 21 ° 10 MeV  > 18 ° Kin Fit with no mass constraint P(  2) > MeV < E  rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with  and    mass constraints (on DATA M  = MeV/c 2 ) NEW approach : 7 and only 7 pnc with 21 ° 10 MeV  > 18 ° Kin Fit with  mass constraint ( on DATA M  = MeV/c2 ) P(  2) > MeV < E  rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with    mass constraint Frascati 29 September 2008 Outline Now Future Conclusions Sample selection

Outline Now Future Conclusions Ponza 05 June 2008 Z gen in acceptance Frascati 29 September 2008 After kinematic fit After P(  2) > 0.01 After EVCL After  > 18 ° After E  > 10 MeV After 320 MeV < E  rad < 400 MeV

Outline Now Future Conclusions Ponza 05 June 2008 Effect on purity and efficiency new approach Frascati 29 September 2008  > 18 °  > 15 °  > 12 °  > 9 °  > 6 ° PUR %  % PUR %  % PUR %  % PUR %  % PUR %  % Low Med I Med II Med III High

Outline Now Future Conclusions Ponza 05 June 2008 Effect on purity and efficiency new approach Frascati 29 September 2008  > 18 °  > 15 °  > 12 °  > 9 °  > 6 ° PUR %  % PUR %  % PUR %  % PUR %  % PUR %  % Low Med I Med II Med III High

Outline Now Future Conclusions Ponza 05 June 2008 Results old approach Frascati 29 September 2008 Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 (0, 1)  30 ± 2  31 ± 2  31 ± 3  25 ± 3  26 ± 4 (0, 0.8)  26 ± 2  28 ± 2  28 ± 3  22 ± 4  22 ± 5 (0, 0.7)  26 ± 3  28 ± 3  27 ± 4  21 ± 4  23 ± 5 (0, 0.6)  30 ± 4  31 ± 4  24 ± 5  20 ± 6 Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 (0, 1)  31± 2 (0, 0.8)  30 ± 3 (0, 0.7)  30 ± 2  29 ± 3  25 ± ± 5 (0, 0.6)-31 ± 4

Outline Now Future Conclusions Ponza 05 June 2008 Fit procedure We obtain an extimate by minimizing The fit is done using a binned likelihood approach Where: n i = recostructed events i = for each MC event (according pure phase space): Evaluate its z true and its z rec (if any!) Enter an histogram with the value of z rec Weight the entry with  z true Weight the event with the fraction of combinatorial background, for the signal (bkg) if it has correct (wrong) pairing Frascati 29 September 2008

Outline Now Future Conclusions Ponza 05 June 2008 Test on fit procedure new approach MediumII range  %64.5 %78 %85 %59 % 53 % %83.5 %90 %93 %76 %70 %56 % 0 – %80 %81.5 %86.5 %62.2 %52 %38 % 0 – %69 %71 %80 %51 %49 %33 % 0 – %66 %72 %78 %68 %63 %45 %

Outline Now Future Conclusions Ponza 05 June 2008 Test on fit procedure Hit or Miss fit procedure

Outline Now Future Conclusions Ponza 05 June 2008 Three new samples Frascati 29 September 2008 LOW Pur  90.02% Eff  %  9.5 % Res  MEDIUM Pur  95.6% Eff  %  % Res  HIGH Pur  97.42% Eff  16 %  9 % Res 

Outline Now Future Conclusions Ponza 05 June 2008 Wrong Pairing fit old vs. new approach MEDIUM HIGH Old approach New approach LOW Old approach New approach Old approach New approach LOW

Outline Now Future Conclusions Ponza 05 June 2008 Results old vs. new approach Frascati 29 September %43 %66 % (0, 0.6)  30 ± 4  29 ± 5  24 ± 4 83 %28 %52 % Range P  Low · 10  3 Medium · 10  3 HIGH · 10  3 (0, 1)  27 ± 2  26 ± 2  22 ± 3 96 %62 %73 % (0, 0.7)  28 ± 3  25 ± 4  22 ± 4 8 %3 %0.1 % (0, 0.6)  46 ± 2  53 ± 3  54 ± 4 2 % 3 % Range Low · 10  3 Medium · 10  3 HIGH · 10  3 (0, 1)  41 ± 3  46 ± 2  44 ± 3 6 % 2 %0.1 % (0, 0.7)  46 ± 4  46 ± 3  47 ± 4

Outline Now Future Conclusions Ponza 05 June 2008 Residuals old vs. new approach HIGH OLD approach HIGH NEW approach MEDIUM NEW approach MEDIUM OLD approach LOW NEW approach LOW NEW approach

Outline Now Future Conclusions Ponza 05 June 2008 Future plans & conclusions Frascati 29 September 2008 In order to understand the presence of the slope in the wrong pairing fit : Introduce in the kinematic fit procedure the √s run by run Use the MC samples with different  values to fit the w.p. If do you have other ideas?... They are very welcomes.

Introduction Analysis Results Conclusions Ponza 05 June 2008 Z gen in acceptance Frascati 29 September 2008

Introduction Analysis Results Conclusions Ponza 05 June 2008 Efficienza con i diversi tagli in  sample Medium II Frascati 29 September 2008

Introduction Analysis Results Conclusions Ponza 05 June 2008

Introduction Analysis Results Conclusions Ponza 05 June 2008 Da confrontare con i risultati dalla procedura di fit Medium II · 10  3  37 ± 2  34 ± 3  36 ± 3  42 ± 4 Medium II · 10  3  32 ± 2  28 ± 3  27 ± 3  38 ± 3 Range (0, 1) (0, 0.8) (0, 0.7) (0, 0.6) Ripesando per il BKG Non ripesando per il BKG

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Fitting the combinatorial background new approach On DATA: Wrong pair fraction (MC) = 10.6 % Wrong pair fraction (DATA) = (12.93 ± 0.31) % Wrong pair fraction (MC) = 4.9 % Wrong pair fraction (DATA) = (7.52 ± 0.37) % Wrong pair fraction (MC) = 2.9 % Wrong pair fraction (DATA) = (5.71 ± 0.42) % Wrong pair fraction (MC) = 1.0 % Wrong pair fraction (DATA) = ???????????? % Wrong pair fraction (MC) = 17.8 % Wrong pair fraction (DATA) = (19.67 ± 0.30) %

Status report on    analysis Ponza 05 June 2008 Results Old – New Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 (0, 1)  30 ± 2  31 ± 2  31 ± 3  25 ± 3  26 ± 4 (0, 0.8)  26 ± 2  28 ± 2  28 ± 3  22 ± 4  22 ± 5 (0, 0.7)  26 ± 3  28 ± 3  27 ± 4  21 ± 4  23 ± 5 (0, 0.6)  30 ± 4  31 ± 4  24 ± 5  20 ± 6 Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 (0, 1)  36 ± 2  37 ± 2  35 ± 3 (0, 0.8)  36 ± 2  37 ± 2  34 ± 3  32 ± 3 (0, 0.7)  38 ± 2  40 ± 3  36 ± 3  33 ± 3 (0, 0.6)  44 ± 3  48 ± 4  42 ± 4  37 ± 4 Introduction Analysis Results Conclusions

Ponza 05 June 2008 Residui old – new approach Status report on    analysis HIGH OLD approach HIGH NEW approach MEDIUM NEW approach MEDIUM OLD approach

Introduction Analysis Results Conclusions Ponza 05 June 2008 Residui old – new approach Status report on    analysis LOW NEW approach LOW OLD approach

Introduction Analysis Results Conclusions Ponza 05 June 2008 Test con nuovo taglio in P(  2) Status report on    analysis Taglio finora utilizzato P(  2) > 0.01  2 < 25 Taglio nuovo P(  2) > 0.1  2 < 19 Cosa succede al fondo……

Introduction Analysis Results Conclusions Ponza 05 June 2008 Test con nuovo taglio in P(  2) new approach Status report on    analysis HIGH MEDIUM

Introduction Analysis Results Conclusions Ponza 05 June 2008 Test con nuovo taglio in P(  2) new approach Status report on    analysis LOW …. Purtroppo non è cambiato niente!!!!!

Introduction Analysis Results Conclusions Status report on    analysis Ponza =5 June 2008 Systematic on Resolution A further check can be done comparing the energies of the two photons in the pion rest frame as function of pion energy Vs.

Introduction Analysis Results Conclusions Statu report on    analysis Ponza 05 June 2008 Systematic on Resolution Stefano ha chiesto di confrontare il valor medio e la sigma del fit gaussiano, graficare le diverse slices per il wrong e right pairing (versione cartacea) Mettere in tabella Ncore e Ntail A further check can be done comparing the energies of the two photons in the pion rest frame as function of pion energy

Introduction Analysis Results Conclusions Ponza 05 June 2008 valor medi campioni low e High new approach Status report on    analysis Low MC DATA MC DATA High

Introduction Analysis Results Conclusions Ponza 05 June 2008 sigma campioni low e High new approach Status report on    analysis MC DATA MC DATA LowHigh La discrepanza potrebbe essere dovuta al fatto che io ho fatto un fit con 3gaus e ho plottato solo la  di core, avrei dovuto tenere conto delle altre  opportunamente pesate per N i

Introduction Analysis Results Conclusions Ponza 05 June 2008 Tabella N core N tails Status report on    analysis MC N core N tails DATA N core N tails Campione MEDIUM

Introduction Analysis Results Conclusions Ponza 05 June 2008 Plot vari Status report on    analysis Ho solo la copia cartacea dei vari check effettuati…

Introduction Analysis Results Conclusions Ponza 05 June 2008 SPARE SLIDES Status report on    analysis

Status report on    analysis Ponza 05 June 2008 Sample selection OLD approach : 7 and only 7 pnc with 21 ° 10 MeV  > 18 ° Kin Fit with no mass constraint P(  2) > MeV < E  rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with  and    mass constraints (on DATA M  = MeV/c 2 ) NEW approach : 7 and only 7 pnc with 21 ° 10 MeV  > 18 ° Kin Fit with  mass constraint ( on DATA M  = MeV/c2 ) P(  2) > MeV < E  rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with    mass constraint Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Purity Old – New Using the same cuts on  min and  Pur  75.4% Pur  84.5% Pur  92% Pur  94.8% Pur  97.6% Pur  82.2% Pur  99% Pur  97.1% Pur  95.1% Pur  89.4% Low purity Medium I purity Medium II purity Medium III purity High purity Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Resolution Old – New Using the same cuts on  min and  RMS = RMS = RMS = RMS = RMS = RMS = RMS = RMS = RMS = Low purity Medium I purity Medium II purity Medium III purity High purity RMS = RMS = Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Resolution (Medium II sample ) Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Efficiency Old – New Using the same cuts on  min and    = %  = %  = 9.24 %  = 4.34%  = %  6.60%  = 11.76%  = 16.24%  = % Low purity Medium I purity Medium II purity Medium III purity High purity Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Slope efficiency Old – New The slope in the efficiency shapes    8%   14%  21%   25%  26% Low purity Medium I purity Medium II purity Medium III purity High purity   12.4%   15.8%   21.9%   27.6%   26.7% Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Efficiency (Medium II sample) Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Fitting the combinatorial background (Old) On DATA: Wrong pair fraction (MC) = 15.5 % Wrong pair fraction (DATA) = (16.7 ± 0.28) % Wrong pair fraction (MC) = 7.9 % Wrong pair fraction (DATA) = (8.98 ± 0.37) % Wrong pair fraction (MC) = 5.2 % Wrong pair fraction (DATA) = (5.2 ± 0.45) % Wrong pair fraction (MC) = 2.4 % Wrong pair fraction (DATA) = (3.47 ± 1.00) % Wrong pair fraction (MC) = 24.6 % Wrong pair fraction (DATA) = (26.45 ± 0.26) %

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Fitting the combinatorial background (New) On DATA: Wrong pair fraction (MC) = 10.6 % Wrong pair fraction (DATA) = (12.86 ± 1.14) % Wrong pair fraction (MC) = 4.9 % Wrong pair fraction (DATA) = (7.21 ± 1.37) % Wrong pair fraction (MC) = 2.9 % Wrong pair fraction (DATA) = (5.09 ± 1.69) % Wrong pair fraction (MC) = 1.0 % Wrong pair fraction (DATA) = ???????????? % Wrong pair fraction (MC) = 17.8 % Wrong pair fraction (DATA) = (19.16 ± 1.10) %

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Fit procedure We obtain an extimate by minimizing The fit is done using a binned likelihood approach Where: n i = recostructed events i = for each MC event (according pure phase space): Evaluate its z true and its z rec (if any!) Enter an histogram with the value of z rec Weight the entry with  z true Weight the event with the fraction of combinatorial background, for the signal (bkg) if it has correct (wrong) pairing

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 The systematic check This procedure relies heavily on MC. The crucial checks for the analysis can be summarized in three main questions: I. Is MC correctly describing efficiencies ? II. Is MC correctly describing resolutions ? III. Is MC correctly estimating the “background” ?

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Efficiency (I) Correction to the photon efficiency is applied weighting the Montecarlo events for the Data/MC photon efficiency ratio ≈ 1  exp(  E  /8.1 )

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Efficiency (I) (Medium II sample) Correction to the photon efficiency is applied weighting the Montecarlo events for the Data/MC photon efficiency ratio ≈ 1  exp(  E  /8.1 )

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Efficiency (II) Further check is to look at the relative ratio between the different samples: N2/N1 data = ± N3/N1 data = ± N4/N1 data = ± N5/N1 data = ± N2/N1 mc = ± N3/N1 mc = ± N4/N1 mc = ± N5/N1 mc. = ±0.0003

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Resolution (I)

Introduction Analysis Results Conclusions Status reort on    analysis Ponza 05 June 2008 Resolution (II) The center of Dalitz plot correspond to 3 pions with the same energy (E i = M  /3 = MeV). A good check of the MC performance in evaluating the energy resolution of  0 comes from the distribution of E  0  E i for z = 0

Introduction Analysis Results Conclusions Status report on    analysis Ponza =5 June 2008 Resolution (III) A further check can be done comparing the energies of the two photons in the pion rest frame as function of pion energy Vs.

Introduction Analysis Results Conclusions Statu report on    analysis Ponza 05 June 2008 Resolution (IV) A data MC discrepancy at level of 1  2 % is observed. Thus we fit filling a histo with: z’ rec = z gen +  (z rec  z gen ). A further check can be done comparing the energies of the two photons in the pion rest frame as function of pion energy

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Background Old Background composition, Medium II purity sample

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Background Old

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Background New Background composition, Medium II purity sample

Introduction Analysis Results Conclusions Status report on    analysis Ponza 05 June 2008 Background New

Status report on    analysis Ponza 05 June 2008 Linearity Check linearity of DATA/MCreco using for MC pure phase space… Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Results Old – New Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 (0, 1)  30 ± 2  31 ± 2  31 ± 3  25 ± 3  26 ± 4 (0, 0.8)  26 ± 2  28 ± 2  28 ± 3  22 ± 4  22 ± 5 (0, 0.7)  26 ± 3  28 ± 3  27 ± 4  21 ± 4  23 ± 5 (0, 0.6)  30 ± 4  31 ± 4  24 ± 5  20 ± 6 Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 (0, 1)  36 ± 2  37 ± 2  35 ± 3 (0, 0.8)  36 ± 2  37 ± 2  34 ± 3  32 ± 3 (0, 0.7)  38 ± 2  40 ± 3  36 ± 3  33 ± 3 (0, 0.6)  44 ± 3  48 ± 4  42 ± 4  37 ± 4 Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Systematic uncertainties Old - New Effect Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 Res  9 9  6 6  4 4  3 3  3 3 Low E   1.6  1.9  1.6  1.3  1.4 Bkg0.  1 1  1 +1 MM  1 1  1 1  2 2  2 2  5 5 Range  4 4  3 3  4 4  4 4  3 +3 Purity    7 7  Tot     9  9  Effect Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 Res Low E  negligible Bkg  2 2 MM  Range  8 +3  Purity  77 Tot     Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Data / Fit distribution New Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Data / Fit distribution Old Introduction Analysis Results Conclusions

Status report of    analysis Ponza 05 June 2008 Results No bkg - bkg Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 (0, 1)  33 ± 2  32 ± 2  29 ± 3 (0, 0.8)  32 ± 2  30 ± 2  28 ± 3  25 ± 3 (0, 0.7)  32 ± 2  31 ± 3  27 ± 3  24 ± 3 (0, 0.6)  36 ± 4  24 ± 3  38 ± 3  25 ± 4 Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 (0, 1)  36 ± 2  37 ± 2  35 ± 3 (0, 0.8)  36 ± 2  37 ± 2  34 ± 3  32 ± 3 (0, 0.7)  38 ± 2  40 ± 3  36 ± 3  33 ± 3 (0, 0.6)  44 ± 3  48 ± 4  42 ± 4  37 ± 4 Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Systematic uncertainties No bkg - bkg Effect Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 Res Low E  Bkg MM Range-4  2 +7  Purity  88 Tot     9 Effect Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 Res Low E  negligible Bkg  2 2 MM  Range  8 +3  Purity  77 Tot     Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Data / Fit distribution Introduction Analysis Results Conclusions

Status report on    analysis Ponza 05 June 2008 Summary Using the Old approach, we have published this preliminary results: This result is compatible with the published Crystal Ball result:  =  ± And the calculations from the  +  -  analysis using only the  -  rescattering in the final state.  =  ± stat ± syst  =  ± stat syst Using the New approach we have:   <  <  0.036

Introduction Theoretical tools Results Conclusions Status report on    analysis Ponza 05 June 2008 Conclusions

Introduction Theoretical tools Results Conclusions Ponza 05 June 2008 Spare Status report on    analysis

Introduction Theoretical tools Results Conclusions Ponza 05 June 2008 Data / Fit ALL Status report on    analysis

Introduction Analysis Results Conclusions Ponza 05 June 2008 Background Old - New Status report on    analysis

Status of       analysis F. Ambrosino T. Capussela F. Perfetto Status of    analysis Ponza 05 June 2008

Status of    analysis Conclusions: 12 March 2008 We have to resolve the Data MC discrepancy on  min 2 We are ready to fit  and to evaluate the systematical errors in the NEW approach. Ponza 05 June 2008

Status of    analysis   min : Data-MC comparison Ponza 05 June 2008

Status of    analysis   min Recoil  is the most energetic cluster. In order to match every couple of photon to the right  0 we build a  2 -like variable for each of the 15 combinations: With: is the invariant mass of  i 0 for j-th combination = MeV is obtained as function of photon energies Ponza 05 June 2008

Status of    decay  Frascati 14 May 2008   min : Data-MC comparison

Introduction Analysis Results Conclusions Status of    analysis Energy resolution We have corrected the   for the observed Data-MC discrepancy Ponza 05 June 2008

Status of    analysis Sample selection OLD approach : 7 and only 7 pnc with 21 ° 10 MeV  > 18 ° Kin Fit with no mass constraint P(  2) > MeV < E  rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with  and    mass constraints (on DATA M  = MeV/c 2 ) NEW approach : 7 and only 7 pnc with 21 ° 10 MeV  > 18 ° Kin Fit with  mass constraint ( on DATA M  = MeV/c2 ) P(  2) > MeV < E  rad < 400 MeV AFTER PHOTON’S PAIRING Kinematic Fit with    mass constraint Ponza 05 June 2008

Status of    analysis OLD – NEW results Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 (0, 1)  30 ± 2  31 ± 2  31 ± 3  25 ± 3  26 ± 4 (0, 0.8)  26 ± 2  28 ± 2  28 ± 3  22 ± 4  22 ± 5 (0, 0.7)  26 ± 3  28 ± 3  27 ± 4  21 ± 4  23 ± 5 (0, 0.6)  30 ± 4  31 ± 4  24 ± 5  20 ± 6 Range Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 (0, 1)  36 ± 2  37 ± 2  35 ± 3 (0, 0.8)  36 ± 2  37 ± 2  34 ± 3  32 ± 3 (0, 0.7)  38 ± 2  40 ± 3  36 ± 3  33 ± 3 (0, 0.6)  44 ± 3  48 ± 4  42 ± 4  37 ± 4 Ponza 05 June 2008

Introduction Theoretical tools Results Conclusions Dalitz plot analysis of    with the KLOE experiment OLD – NEW systematic uncertainties Effect Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 High · 10  3 Res  9 9  6 6  4 4  3 3  3 3 Low E   1.6  1.9  1.6  1.3  1.4 Bkg0.  1 1  1 +1 MM  1 1  1 1  2 2  2 2  5 5 Range  4 4  3 3  4 4  4 4  3 +3 Purity    7 7  Tot     9  9  Effect Low · 10  3 Medium I · 10  3 Medium II · 10  3 Medium III · 10  3 Res???? + 5????? Low E   0.2  0.1 .2  0.4 Bkg  2 2 MM  Range  8 +3  Purity  77 Tot     8 +1 Ponza 05 June 2008

Status of    analysis OLD – NEW result In the OLD approach we give the final result for the slope parameter  in corrispondence of the sample with 92% of purity (Medium II):  =  ± stat ± syst In the NEW approach we give the final result for the slope parameter  in corrispondence of the sample with 95% of purity (MediumII):  =  ± stat / syst Ponza 05 June 2008

Status of    analysis OLD - NEW Using the same cuts on  min and  Pur  75.4% Pur  84.5% Pur  92% Pur  94.8% Pur  97.6% Pur  82.2% Pur  99% Pur  97.1% Pur  95.1% Pur  89.4% Low purity Medium I purity Medium II purity Medium III purity High purity Ponza 05 June 2008

Status of    analysis OLD - NEW The slope in the efficiency shapes    8%   14%  21%   25%  26% Low purity Medium I purity Medium II purity Medium III purity High purity   12.4%   15.8%   21.9%   27.6%   26.7% Ponza 05 June 2008

Status of    analysis OLD - NEW RMS = RMS = Ponza 05 June 2008

Status of    decay    : Data-MC comparison Ponza 05 June 2008