Matematika Pertemuan 13 Matakuliah: D0024/Matematika Industri II Tahun : 2008.

Slides:



Advertisements
Similar presentations
Chapter 2 Simultaneous Linear Equations
Advertisements

The Idea of Limits x f(x)f(x)
ARITHMETIC DAN GEOMETIC MEAN Pertemuan 3 Matakuliah: F Analisis Kuantitatif Tahun: 2009.
HAMPIRAN NUMERIK SOLUSI PERSAMAAN DIFERENSIAL (lanjutan) Pertemuan 12 Matakuliah: METODE NUMERIK I Tahun: 2008.
Preparing for Your VFX Shoot Pertemuan 02 Matakuliah : UO714 / Technology for Animation Tahun : 2009.
The Powerful Speeches and Presentations Soal Pertemuan 09 – 10 By: Dr. Drs. Dominikus Tulasi, MM. Mata kuliah: – CRISIS COMMUNICATION AND PUBLIC.
Pertemuan 6 Matakuliah: J0124/Manajemen Sumber Daya Manusia Tahun: 2007/2008 MODUL 6 Jobs (II)
Teorema Stokes Pertemuan
Regresi dan Korelasi Linear Pertemuan 19
1 Penyelesaian dari Persamaan differensial order satu For 1 st order systems, this general form can be rewritten as follows: The constant (  ) is known.
STRUCTURAL DYNAMIC IN BUILDING CODE Pertemuan Matakuliah: Dinamika Struktur & Teknik Gempa Tahun: S0774.
Green Screen Production Pertemuan 02 Matakuliah : U0584 / DIGITAL COMPOSITING II Tahun : 2009.
EIGENVALUES, EIGENVECTORS Pertemuan 6 Matakuliah: MATRIX ALGEBRA FOR STATISTICS Tahun: 2009.
3D Compositing & Special Effects Implementation Pertemuan 07 Matakuliah : U0584 / DIGITAL COMPOSITING II Tahun : 2009.
VARIANS DAN STANDAR DEVIASI PORTFOLIO Pertemuan 10 Matakuliah: F Analisis Kuantitatif Tahun: 2009.
Solving Equations = 4x – 5(6x – 10) -132 = 4x – 30x = -26x = -26x 7 = x.
Matematika Pertemuan 26 Matakuliah: D0024/Matematika Industri II Tahun : 2008.
Pertemuan 5-6 Matakuliah: A0214/Audit Sistem Informasi Tahun: 2007.
Matematika Pertemuan 20 Matakuliah: D0024/Matematika Industri II Tahun : 2008.
Ch 2.6: Exact Equations & Integrating Factors
Matematika Pertemuan 24 Matakuliah: D0024/Matematika Industri II Tahun : 2008.
Pertemuan 9-10 Matakuliah: A0214/Audit Sistem Informasi Tahun: 2007.
Ch 2.1: Linear Equations; Method of Integrating Factors
Math 3120 Differential Equations with Boundary Value Problems
Ch 2.6: Exact Equations & Integrating Factors Consider a first order ODE of the form Suppose there is a function  such that and such that  (x,y) = c.
Chap 1 First-Order Differential Equations
1 Soal Pertemuan 1 Matakuliah: G0454 / Class Management & Education Media Tahun: 2006.
LIAL HORNSBY SCHNEIDER
1 Part 1: Ordinary Differential Equations Ch1: First-Order Differential Equations Ch2: Second-Order Differential Equations Ch3: The Laplace Transform Ch4:
Section 4-1: Introduction to Linear Systems. To understand and solve linear systems.
Introduction Pertemuan 1 Matakuliah: K0442-Metode Kuantitatif Tahun: 2009.
Goal: Solve linear equations.. Definitions: Equation: statement in which two expressions are equal. Linear Equation (in one variable): equation that.
3.1 System of Equations Solve by graphing. Ex 1) x + y = 3 5x – y = -27 Which one is the solution of this system? (1,2) or (-4,7) *Check (1,2)Check (-4,7)
(1) The order of ODE: the order of the highest derivative e.g., Chapter 14 First-order ordinary differential equation (2) The degree of ODE: After the.
Differential Equations
MATH 416 Equations & Inequalities II. Solving Systems of Equations Apart from the graphic method, there are three other methods we could use to solve.
Chapter 21 Exact Differential Equation Chapter 2 Exact Differential Equation.
Differential Equations
Solving Partial Differential Equation Numerically Pertemuan 13 Matakuliah: S0262-Analisis Numerik Tahun: 2010.
Boyce/DiPrima 9 th ed, Ch 2.6: Exact Equations & Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
First-order Differential Equations Chapter 2. Overview II. Linear equations Chapter 1 : Introduction to Differential Equations I. Separable variables.
MultiPass Rendering & Layering in 3D Pertemuan 08
PENGUJIAN HIPOTESIS 1 Pertemuan 9
Mata kuliah : – CRISIS COMMUNICATION AND PUBLIC REALTIONS
Creative visual Effects Pertemuan 12
Short bumper designing Pertemuan 09
DIFFERENTIAL EQUATIONS
Introduction Pertemuan 1
Unit 2: Absolute Value Absolute Value Equations and Inequalities
NILAI WAKTU DARI UANG (Time Value of Money) Pertemuan 11
3 Dimension View Pertemuan 5&6
Matakuliah : R0434/Aesthetics
Ch 2.6: Exact Equations & Integrating Factors
Mata kuliah : – CRISIS COMMUNICATION AND PUBLIC REALTIONS
Mata kuliah : – CRISIS COMMUNICATION AND PUBLIC REALTIONS
First order non linear pde’s
Questions Week 1 Ch1 Week 1 Ch 2
Advanced Masks & alpha Channel Using 3D Pertemuan 10
Mata kuliah : – CRISIS COMMUNICATION AND PUBLIC REALTIONS
Fuzzy Linear Programming Pertemuan 8 (GSLC)
Matematika Pertemuan 11 Matakuliah : D0024/Matematika Industri II
INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12
<<REQUIREMENTS FOR THE WHEELS CASE STUDY SYSTEM Pertemuan 5
Projection Pertemuan 10 Matakuliah : Matrix Algebra for Statistics
Review & Question Pertemuan 4
Notes Over 9.6 An Equation with One Solution
Persamaan Diferensial Biasa (Ordinary Differential Equation)
Pengintegralan Numerik (lanjutan) Pertemuan 10
Systems of Linear Equations: An Introduction
Graphical Solutions of Trigonometric Equations
Presentation transcript:

Matematika Pertemuan 13 Matakuliah: D0024/Matematika Industri II Tahun : 2008

Bina Nusantara Persamaan Diferensial Eksak Consider a first-order ODE in the slightly different form (1) (1) Such an equation is said to be exact if (2) (2) This statement is equivalent to the requirement that a conservative field exists, so that a scalar potential can be defined. For an exact equation, the solution isconservative field (3) (3) where is a constant.

Bina Nusantara A first-order ODE ( ◇ ) is said to be inexact if (4) (4) For a nonexact equation, the solution may be obtained by defining an integrating factor of ( ◇ ) so that the new equation integrating factor (5) (5) satisfies (6) (6) or, written out explicitly,

Bina Nusantara This transforms the nonexact equation into an exact one. Solving the last equation for gives (8) (8) Therefore, if a function satisfying equation can be found, then writing (9) (9) (10) (10) in equation ( ◇ ) then gives (11) (11) which is then an exact ODE. Special cases in which can be found include -dependent, -dependent, and -dependent integrating factors.

Bina Nusantara Contoh-contoh Kerjakan latihan dalam modul soal